Java基础23-初识Lock

2019-08-13  本文已影响0人  Tian_Peng

概述

在前面的文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。

synchronized的缺陷

既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?

在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,这将影响程序执行效率。

因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

但是采用synchronized关键字来实现同步的话,就会导致一个问题:如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,同样通过Lock就可以办到。

另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

Lock和synchronized的不同:

认识Lock

Lock位于java.util.concurrent.locks包下,它是一个接口:

public interface Lock {
    void lock();
    void lockInterruptibly() throws InterruptedException;
    boolean tryLock();
    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    void unlock();
    Condition newCondition();
}

在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

Lock lock = ...;
lock.lock();
try{
    //处理任务
}catch(Exception ex){
     
}finally{
    lock.unlock();   //释放锁
}
Lock lock = ...;
if(lock.tryLock()) {
     try{
         //处理任务
     }catch(Exception ex){
         
     }finally{
         lock.unlock();   //释放锁
     } 
}else {
    //如果不能获取锁,则直接做其他事情
}
public void method() throws InterruptedException {
    Lock lock = ...;
    lock.lockInterruptibly();
    try {  
     //.....
    }
    finally {
        lock.unlock();
    }  
}

注意:当一个线程获取了锁之后,是不会被interrupt()方法中断的。单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到进行等待的情况下,是可以响应中断的。

而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

ReentrantLock

ReentrantLock,意思是“可重入锁”,ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

lock()的正确使用方法

先看以下代码示例:

public class Test {
    
    private ArrayList<Integer> arrayList = new ArrayList<>();

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread() {
            public void run() {
                test.insert(Thread.currentThread());
            }
        }.start();

        new Thread() {
            public void run() {
                test.insert(Thread.currentThread());
            }
        }.start();
    }

    public void insert(Thread thread) {
        Lock lock = new ReentrantLock();    //注意这个地方
        lock.lock();
        try {
            System.out.println(thread.getName() + "得到了锁");
            for (int i = 0; i < 5; i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        } finally {
            System.out.println(thread.getName() + "释放了锁");
            lock.unlock();
        }
    }
}

运行结果:

Thread-0得到了锁
Thread-1得到了锁
Thread-0释放了锁
Thread-1释放了锁

怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?
原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

正确的使用方式如下:

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<>();
    private Lock lock = new ReentrantLock();    //注意这个地方

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread() {
            public void run() {
                test.insert(Thread.currentThread());
            }
        }.start();

        new Thread() {
            public void run() {
                test.insert(Thread.currentThread());
            }
        }.start();
    }

    public void insert(Thread thread) {
        lock.lock();
        try {
            System.out.println(thread.getName() + "得到了锁");
            for (int i = 0; i < 5; i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        } finally {
            System.out.println(thread.getName() + "释放了锁");
            lock.unlock();
        }
    }
}

程序运行结果:

Thread-0得到了锁
Thread-0释放了锁
Thread-1得到了锁
Thread-1释放了锁

tryLock()的使用方法

public class Test {
    
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意这个地方

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread() {
            public void run() {
                test.insert(Thread.currentThread());
            }
        }.start();

        new Thread() {
            public void run() {
                test.insert(Thread.currentThread());
            }
        }.start();
    }

    public void insert(Thread thread) {
        if (lock.tryLock()) {
            try {
                System.out.println(thread.getName() + "得到了锁");
                for (int i = 0; i < 5; i++) {
                    arrayList.add(i);
                }
            } catch (Exception e) {
                // TODO: handle exception
            } finally {
                System.out.println(thread.getName() + "释放了锁");
                lock.unlock();
            }
        } else {
            System.out.println(thread.getName() + "获取锁失败");
        }
    }
}

lockInterruptibly()响应中断的使用方法

public class Test {
    private Lock lock = new ReentrantLock();

    public static void main(String[] args) {
        Test test = new Test();
        MyThread thread1 = new MyThread(test);
        MyThread thread2 = new MyThread(test);
        thread1.start();
        thread2.start();

        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }

    public void insert(Thread thread) throws InterruptedException {
        lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
        try {
            System.out.println(thread.getName() + "得到了锁");
            long startTime = System.currentTimeMillis();
            for (; ; ) {
                if (System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
                    break;
                //插入数据
            }
        } finally {
            System.out.println(Thread.currentThread().getName() + "执行finally");
            lock.unlock();
            System.out.println(thread.getName() + "释放了锁");
        }
    }
}

class MyThread extends Thread {
    private Test test = null;

    public MyThread(Test test) {
        this.test = test;
    }

    @Override
    public void run() {

        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println(Thread.currentThread().getName() + "被中断");
        }
    }
}

ReadWriteLock

ReadWriteLock也是一个接口,在它里面只定义了两个方法:

public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading
     */
    Lock readLock();

    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing
     */
    Lock writeLock();
}

一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。

下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

ReentrantReadWriteLock

ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:

下面通过几个例子来看一下ReentrantReadWriteLock具体用法。
假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread() {
            public void run() {
                test.get(Thread.currentThread());
            }
        }.start();

        new Thread() {
            public void run() {
                test.get(Thread.currentThread());
            }
        }.start();

    }

    public synchronized void get(Thread thread) {
        long start = System.currentTimeMillis();
        while (System.currentTimeMillis() - start <= 1) {
            System.out.println(thread.getName() + "正在进行读操作");
        }
        System.out.println(thread.getName() + "读操作完毕");
    }
}

这段程序的输出结果是:直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0读操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1读操作完毕

该用读写锁:

public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

    public static void main(String[] args) {
        final Test test = new Test();

        new Thread() {
            public void run() {
                test.get(Thread.currentThread());
            }
        }.start();

        new Thread() {
            public void run() {
                test.get(Thread.currentThread());
            }
        }.start();

    }

    public void get(Thread thread) {
        rwl.readLock().lock();
        try {
            long start = System.currentTimeMillis();

            while (System.currentTimeMillis() - start <= 1) {
                System.out.println(thread.getName() + "正在进行读操作");
            }
            System.out.println(thread.getName() + "读操作完毕");
        } finally {
            rwl.readLock().unlock();
        }
    }
}

运行结果:

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0读操作完毕
Thread-1读操作完毕

说明thread1和thread2在同时进行读操作,这样就大大提升了读操作的效率。

注意:

总结

Lock和synchronized有以下几点不同:

Synchronized

Lock

最后再贴一段Doug Lea大神在书中,关于在Synchronized和ReentrantLock之间进行选择的原话:

在一些内置锁无法满足需求的情况下,ReentrantLock可以作为一种高级工具。当需要一些高级功能时才应该使用ReentrantLock,这些功能包括:可定时的,可轮询的与可中断的锁获取操作,公平队列,以及非块结构的锁。否则,还是应该优先使用Synchronized

上一篇 下一篇

猜你喜欢

热点阅读