程序员干货Android

用10行代码自己写个人脸识别程序

2016-11-23  本文已影响18633人  CloudsDocker

The English version of this blog at here : http://www.jianshu.com/p/cba96dad5f24

CV (Computer Vision)

最近在研究CV的一些开源库(OpenCV),有一个体会就是在此领域,除了一些非常学术的机器学习, 深度学习等概念外,其实还有一些很有趣的现实的应用场景。比如之前很流行的微软的 https://how-old.net, 你使用自己指定或者上传的照片进行面部识别猜年龄。 如下图所示:

细想一下这个很吸引眼球的程序,其实技术本身打散了就包括两大块,一是从图片中扫描并进行面部识别,二是对找到的人脸根据算法去猜个年龄。大家可以猜猜实现第一个功能需要多少核心代码量?其实不用上万行,在这里我就使用短短几行代码(去除空格换行什么的,有效代码只要10行)就实现一个高大上面部识别的功能。在此文容我细述一下具体实现代码以及我对机器识别图像领域技术的理解。

面部识别,刷脸

人脸识别技术大家应该都不陌生,之前大家使用的数码相机,或者现在很多手机自带的相机都有人脸识别的功能。其效果就像是下图这样。近的看,剁手节刚刚过了没有多久 , 背后的马老板一直在力推的刷脸支付也是一个此领域的所谓“黑科技”。比如在德国汉诺威电子展上,马云用支付宝“刷脸”买了一套纪念邮票。人脸识别应用市场也从爆发。随后,各大互联网巨头也纷纷推出了刷脸相关的应用。

如果要加个定义,人脸识别又叫做人像识别、面部识别,是一种通过用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术。

我的十行代码程序

OK,长话短说,先上 干货 ,下面就是此程序的带注释 版本,完整的程序以及相关配套文件可以在 这个github库 https://github.com/CloudsDocker/pyFacialRecognition 中找到,有兴趣可以fork 下来玩玩。下面是整个程序的代码样子,后面我会逐行去解释分析。

就这短短的十行代码代码?seriously?“有图有真相”,我们先来看下运行的效果:

首先是原始的图片

运行程序后识别出面部并高亮显示的结果

请注意 K歌二人组 的脸上的红色框框,这就是上面十行代码的成果。

代码解析

准备工作

因为此程序使用是的Python,因此你需要去安装Python。这里就不赘述了。除此之外,还需要安装 OpenCV (http://opencv.org/downloads.html)。
多说一句,这个 OpenCV正如其名,是一个开源的机器识别的深度学习框架。这是Intel(英特尔)实验室里的一个俄罗斯团队创造的,目前在开源社区非常的活跃。

特别提一下,对于Mac的用户,推荐使用brew去安装 (下面第一条语句可能会执行报错,我当时也是搞了好久。如果遇到第一条命令不过可以通过文尾的方式联系作者)

brew tap homebrew/science
brew install opencv

安装完成之后,在python的命令行中输入如下代码验证,如果没有报错就说明安装好了。

>>> import cv2

程序代码“庖丁解牛”

# -*- coding: utf-8 -*-
import cv2,sys
inputImageFile=sys.argv[1]
faceClassifier=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

这里有几个在深度学习及机器图像识别领域中的几个概念,稍微分析一下,至于深入的知识,大家可以自行搜索或者联系作者。

Classifer

在机器深度学习领域,针对识别不同物体都有不同的classifier,比如有的classifier来识别洗车,还有识别飞机的classifier,有classifier来识别照片中的笑容,眼睛等等。而我们这个例子是需要去做人脸识别,因此需要一个面部识别的classifier。

物体识别的原理

一般来说,比如想要机器学习着去识别“人脸”,就会使用大量的样本图片来事先培训,这些图片分为两大类,positive和negative的,也就是分为包“含有人脸”的图片和“不包含人脸”的图片,这样当使用程序去一张一张的分析这些图片,然后分析判断并对这些图片“分类” (classify),即合格的图片与不合格的图片,这也就其为什么叫做 classifier , 这样学习过程中积累的"知识",比如一些判断时的到底临界值多少才能判断是positive还是negative什么的,都会存储在一个个XML文件中,这样使用这些前人经验(这里我们使用了 哈尔 分类器)来对新的图片进行‘专家判断'分析,是否是人脸或者不是人脸。

Cascade

这里的 Cascade是 层级分类器 的意思。为什么要 分层 呢?刚才提到在进行机器分析照片时,其实是对整个图片从上到下,从左到右,一个像素一个像素的分析,这些分析又会涉及很多的 特征分析 ,比如对于人脸分析就包含识别眼睛,嘴巴等等,一般为了提高分析的准确度都需要有成千上万个特征,这样对于每个像素要进行成千上万的分析,对于整个图片都是百万甚至千万像素,这样总体的计算量会是个天文数字。但是,科学家很聪明,就想到分级的理念,即把这些特征分层,这样分层次去验证图片,如果前面层次的特征没有通过,对于这个图片就不用判断后面的特征了。这有点像是系统架构中的 FF (Fail Fast),这样就提高了处理的速度与效率。

objImage=cv2.imread(inputImageFile)
cvtImage=cv2.cvtColor(objImage,cv2.COLOR_BGR2GRAY)
foundFaces=faceClassifier.detectMultiScale(cvtImage,scaleFactor=1.3,minNeighbors=9,minSize=(50,50),flags = cv2.cv.CV_HAAR_SCALE_IMAGE)
print(" 在图片中找到了 {} 个人脸".format(len(foundFaces)))
for (x,y,w,h) in foundFaces:
    cv2.rectangle(objImage,(x,y),(x+w,y+h),(0,0,255),2)
cv2.imshow(u'面部识别的结果已经高度框出来了。按任意键退出'.encode('gb2312'), objImage)
cv2.waitKey(0)

总结

好了,上面是这个程序的详细解释以及相关的知识的讲解。其实这个只是个抛砖引玉的作用,还用非常多的应用场景,比如程序解析网页上的图片验证码,雅虎前几个月开源的 NSFW, Not Suitable for Work (NSFW),即判断那些不适合工作场所的图片,内容你懂的。 :-)

最后,再提一下,所有这些源代码及相关文件都开源在 https://github.com/CloudsDocker/pyFacialRecognition ,在fork并下载到本地后执行下面代码来测试运行

git clone https://github.com/CloudsDocker/pyFacialRecognition.git
cd pyFacialRecognition
./run.sh

如果有任何建议或者想法,请联系我。

联系我:

Reference

上一篇 下一篇

猜你喜欢

热点阅读