高中物理常用公式

2019-05-15  本文已影响0人  天堂水o

力学
v=\dfrac{x}{t}
v=\dfrac{\Delta x}{\Delta t}
\overline v=\dfrac{\Delta x}{\Delta t}
a=\dfrac{\Delta V}{\Delta t}=\dfrac{v-v_0}{\Delta t}
v=v_0+at
x=v_0t+\dfrac{1}{2}at^2
v^2-v^2_0=2ax
\overline v=\dfrac{v_0+v}{2}
v=gt
h=\dfrac{1}{2}gt^2
v^2=2gh
\Delta x=aT^2
\overline v=\dfrac{v}{2}=\dfrac{1}{2}gt
\Delta h=gT^2
v=v_0-gt
h=v_0t-\dfrac{1}{2}gt^2
-2gh=v^2-v_0^2
h=\dfrac{v_0+v}{2} -t
G=mg
F=\mu F_\rm N
F=kx
F=ma
F=-F'
F=m(g+a)
F=m(g-a)
v_x=v_0
v_y=gt
x=v_0t
y=\dfrac{1}{2}gt^2
v=\omega r
v=\dfrac{2\pi r}{T}
\omega=\dfrac{2\pi}{T}
F=m\dfrac{v^2}{r}=mr\omega^2=mr(\dfrac{2\pi}{T})^2=ma_\rm n
a_\mathrm{n}=m\dfrac{v^2}{r}=m\omega^2r=m\dfrac{4\pi^2}{T^2}=m(2\pi f)^2r=m\omega v
F=G\dfrac{m_1m_2}{r^2}
G\dfrac{Mm}{r^2}=m\dfrac{v^2}{r}=mr\omega^2=m\dfrac{4\pi^2}{T^2}r=ma_\rm n
G\dfrac{Mm}{r^2}=mg
F \propto \dfrac{M m}{r^{2}}
v=\sqrt{\dfrac{GM}{R}}
W=Fl\rm cos \alpha
P=\dfrac{W}{t}=Fv\rm cos \alpha
E_\mathrm{p}=mgh
E_\mathrm{k}=\dfrac{1}{2}mv^2
W_\mathrm{G}=mgh_1-mgh_2=E_\mathrm{p1}-E_\mathrm{p2}
W=\dfrac{1}{2}mv_2^2-\dfrac{1}{2}mv_1^2
E_\mathrm{k1}+E_\mathrm{p1}=E_\mathrm{k2}+E_\mathrm{p2}
W_弹=-\dfrac{1}{2}kl^2
\Delta E_\mathrm{p}=\dfrac{1}{2}kl^2
F=-k x
x=A \sin (\omega t+\varphi)=A \sin \left(\dfrac{2 \pi}{T} t+\varphi\right)
T=2 \pi \sqrt{\dfrac{l}{g}}
v=\lambda f=\dfrac{\lambda}{T}
n_{12}=\dfrac{v_{1}}{v_{2}}=\dfrac{\sin \theta_{1}}{\sin \theta_{2}}
p=mv
I=Ft
F t=m v^{\prime}-m v=\Delta p
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}

热学
m_{0}=\dfrac{M_{\mathrm{A}}}{N_{\mathrm{A}}}=\dfrac{\rho V_{\mathrm{A}}}{N_{\mathrm{A}}}
V_{0}=\dfrac{V_{\mathrm{A}}}{N_{\mathrm{A}}}=\dfrac{M_{\mathrm{A}}}{\rho N_{\mathrm{A}}}
d=\sqrt[3]{\dfrac{6 V_{0}}{\pi}}
d=\sqrt[3]{V_{0}}
T=t+273.15 \mathrm{K}
p_{1} V_{1}=p_{2} V_{2}
\dfrac{p_{1}}{T_{1}}=\dfrac{p_{2}}{T_{2}}
\dfrac{V_{1}}{T_{1}}=\dfrac{V_{2}}{T_{2}}
\dfrac{p_{1} V_{1}}{T_{1}}=\dfrac{p_{2} V_{2}}{T_{2}}
\Delta U=Q+W

电磁学
F=\dfrac{kq_1q_2}{r}
E=\dfrac{F}{q}=k\dfrac{Q}{r^2}=\dfrac{U}{d}
\varphi =\dfrac{E_\mathrm{p}}{q}
U_{AB}=\varphi_A-\varphi_B=\dfrac{W_{AB}}{q}=Ed
C=\dfrac{Q}{U}=\dfrac{\varepsilon_\mathrm{r}S}{4\pi kd}
y=\dfrac{qUl^2}{2mv_0^2d}
\tan \varTheta =\dfrac{qUl}{mv_0^2d}
I=\dfrac{q}{t}=nqSv=\dfrac{U}{R}
R=\dfrac{U}{I}=\rho \dfrac{l}{S}
P_电=UI
P_热=I^2R
E=\dfrac{W}{q}
W=UIt
Q=I^2Rt
I=\dfrac{E}{R+r}
B=\dfrac{F}{IL}
F=BIL\sin \varTheta
\varPhi =BS
F=qvB\sin \varTheta
F_\mathrm{n}=qvB=\dfrac{mv^2}{R}
R=\dfrac{mv}{qB}
T=\dfrac{2\pi m}{qB}
E=n\dfrac{\Delta \varPhi }{\Delta t}
E=Blv\sin \varTheta
E=L\dfrac{\Delta I}{\Delta t}
v=\lambda f
T=2 \pi \sqrt{L C}
f=\dfrac{1}{2 \pi \sqrt{L C}}

光学
n=\dfrac{\sin \theta_{1}}{\sin \theta_{2}}=\dfrac{c}{v}
\sin C=\dfrac{1}{n}
\Delta x=\dfrac{l}{d} \lambda
\Delta r=n \lambda
\Delta r=\dfrac{(2 n+1)}{2} \lambda(暗条纹)(n=0, \pm 1, \pm 2 \cdots)
\varepsilon=h v
\nu_{\mathrm{c}}=\dfrac{W_{0}}{h}
\lambda=\dfrac{h}{p}
\nu=\dfrac{\varepsilon}{h}
E_{\mathrm{k}}=h \nu-W_{0}

原子物理学与相对论
l=l_{0} \sqrt{1-\left(\dfrac{v}{c}\right)^{2}}
\Delta t=\dfrac{\Delta \tau}{\sqrt{1-\left(\dfrac{v}{c}\right)^{2}}}
m=\dfrac{m_{0}}{\sqrt{1-\left(\dfrac{v}{c}\right)^{2}}}
E=m c^{2}
u=\dfrac{u^{\prime}+v}{1+\dfrac{u^{\prime} v}{c^{2}}}
h \nu=E_{m}-E_{n}
E_{n}=\frac{E_{1}}{n^{2}}(n=1,2,3 \cdots)
r_{n}=n^{2} r_{1}(n=1,2,3 \cdots)
E=m c^{2}
\Delta E=\Delta m c^{2}

常见符号

上一篇 下一篇

猜你喜欢

热点阅读