算法-leetcode-数组-88. 合并两个有序数组

2020-05-01  本文已影响0人  yufw

题目: 88. 合并两个有序数组

题目说明

给你两个有序整数数组 nums1 和 nums2,请你将 nums2 合并到 nums1 中,使 nums1 成为一个有序数组。

说明:

初始化 nums1 和 nums2 的元素数量分别为 m 和 n 。
你可以假设 nums1 有足够的空间(空间大小大于或等于 m + n)来保存 nums2 中的元素。

示例:

输入:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6],       n = 3

输出: [1,2,2,3,5,6]
解题思路:
  1. 合并两个数组
  2. 对合并的数组进行排序
源码:
class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        System.arraycopy(nums2,0,nums1,m,n);
        Arrays.sort(nums1);
    }
}


System.arraycopy()的源码见下
/**
     * @param      src      the source array.
     * @param      srcPos   starting position in the source array.
     * @param      dest     the destination array.
     * @param      destPos  starting position in the destination data.
     * @param      length   the number of array elements to be copied.
     * @throws     IndexOutOfBoundsException  if copying would cause
     *             access of data outside array bounds.
     * @throws     ArrayStoreException  if an element in the {@code src}
     *             array could not be stored into the {@code dest} array
     *             because of a type mismatch.
     * @throws     NullPointerException if either {@code src} or
     *             {@code dest} is {@code null}.
     */
@HotSpotIntrinsicCandidate
public static native void arraycopy(Object src,  int  srcPos,
                                    Object dest, int destPos,
                                    int length);
Arrays.sort() 源码
/**
     * Sorts the specified array into ascending numerical order.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     */
public static void sort(int[] a) {
    DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}



Class DualPivotQuicksort {
    
    // ....省略..
    
    
    /**
     * The maximum number of runs in merge sort.
     */
    private static final int MAX_RUN_COUNT = 67;
    
    /**
     * If the length of an array to be sorted is less than this
     * constant, Quicksort is used in preference to merge sort.
     */
    private static final int QUICKSORT_THRESHOLD = 286;
    
    
/**
     * Sorts the specified range of the array using the given
     * workspace array slice if possible for merging
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param work a workspace array (slice)
     * @param workBase origin of usable space in work array
     * @param workLen usable size of work array
     */
    static void sort(int[] a, int left, int right,
                     int[] work, int workBase, int workLen) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            // Equal items in the beginning of the sequence
            while (k < right && a[k] == a[k + 1])
                k++;
            if (k == right) break;  // Sequence finishes with equal items
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                // Transform into an ascending sequence
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            }

            // Merge a transformed descending sequence followed by an
            // ascending sequence
            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
                count--;
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // These invariants should hold true:
        //    run[0] = 0
        //    run[<last>] = right + 1; (terminator)

        if (count == 0) {
            // A single equal run
            return;
        } else if (count == 1 && run[count] > right) {
            // Either a single ascending or a transformed descending run.
            // Always check that a final run is a proper terminator, otherwise
            // we have an unterminated trailing run, to handle downstream.
            return;
        }
        right++;
        if (run[count] < right) {
            // Corner case: the final run is not a terminator. This may happen
            // if a final run is an equals run, or there is a single-element run
            // at the end. Fix up by adding a proper terminator at the end.
            // Note that we terminate with (right + 1), incremented earlier.
            run[++count] = right;
        }

        // Determine alternation base for merge
        byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        // Use or create temporary array b for merging
        int[] b;                 // temp array; alternates with a
        int ao, bo;              // array offsets from 'left'
        int blen = right - left; // space needed for b
        if (work == null || workLen < blen || workBase + blen > work.length) {
            work = new int[blen];
            workBase = 0;
        }
        if (odd == 0) {
            System.arraycopy(a, left, work, workBase, blen);
            b = a;
            bo = 0;
            a = work;
            ao = workBase - left;
        } else {
            b = work;
            ao = 0;
            bo = workBase - left;
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
                        b[i + bo] = a[p++ + ao];
                    } else {
                        b[i + bo] = a[q++ + ao];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i + bo] = a[i + ao]
                );
                run[++last] = right;
            }
            int[] t = a; a = b; b = t;
            int o = ao; ao = bo; bo = o;
        }
    }
    
    // ....省略..
    
}

个人水平有限,如有问题,请各路大神指教,虚心接纳

如果觉得有帮助,请点赞收藏,谢谢

上一篇下一篇

猜你喜欢

热点阅读