4中垃圾回收器(非常好理解)
原地址:https://blog.csdn.net/clover_lily/article/details/80160726
本文主要介绍4种垃圾收集算法及8种垃圾收集器:
垃圾收集算法
1、标记-清除算法(Mark-Sweep)
“标记-清除”算法是最基础的算法,分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。它主要由两个缺点:一个是效率问题,标记和清除过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
2、复制算法(Copying)(针对新生代)
为了解决标记清除算法的效率问题,出现了复制算法,它将可用内存按容量划分为大小相等的两块,每次使用其中的一块。当这块的内存用完了,就将还存活着的对象复制到另一块上面,然后再把已使用过的内存空间一次清理掉。优点是每次都是对其中的一块进行内存回收,内存分配时就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。缺点是将内存缩小为原来的一半,代价太高了一点。
现在的商业虚拟机都采用复制收集算法来回收新生代,有研究表明,新生代中的对象98%是朝生夕死的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中的一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地拷贝到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存是会被“浪费”的。当然,并不能保证每次回收都只有10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。即如果另外一块Survivor空间没有足够的空间存放上一次新生代收集下来的存活对象,这些对象将直接通过分配担保机制进入老年代。
3、标记-整理算法(Mark-Compact)(针对老年代)
复制收集算法在对象存活率较高时就需要执行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用复制收集算法。
根据老年代的特点提出了“标记-整理”算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。
标记-整理的步骤:
标记阶段
整理阶段:移动存活对象,同时更新存活对象中所有指向被移动对象的指针
整理的顺序
不同算法中,堆遍历的次数,整理的顺序,对象的迁移方式都有所不同。而整理顺序又会影响到程序的局部性。主要有以下3种顺序:
1. 任意顺序:对象的移动方式和它们初始的对象排列及引用关系无关
任意顺序整理实现简单,且执行速度快,但任意顺序可能会将原本相邻的对象打乱到不同的高速缓存行或者是虚拟内存页中,会降低赋值器的局部性。任意顺序算法只能处理单一大小的对象,或者针对大小不同的对象需要分批处理;
2. 线性顺序:将具有关联关系的对象排列在一起
3. 滑动顺序:将对象“滑动”到堆的一端,从而“挤出”垃圾,可以保持对象在堆中原有的顺序
所有现代的标记-整理回收器均使用滑动整理,它不会改变对象的相对顺序,也就不会影响赋值器的空间局部性。复制式回收器甚至可以通过改变对象布局的方式,将对象与其父节点或者兄弟节点排列的更近以提高赋值器的空间局部性。
整理算法的限制,如整理过程需要2次或者3次遍历堆空间;对象头部可能需要一个额外的槽来保存迁移的信息。
部分整理算法:
双指针回收算法:实现简单且速度快,但会打乱对象的原有布局
Lisp2算法(滑动回收算法):需要在对象头用一个额外的槽来保存迁移完的地址
引线整理算法:可以在不引入额外空间开销的情况下实现滑动整理,但需要2次遍历堆,且遍历成本较高
单次遍历算法:滑动回收,实时计算出对象的转发地址而不需要额外的开销
4、分代收集算法(Generational Collection)
当前商业虚拟机的垃圾收集都采用“分代收集”算法,这种算法并无新的方法,只是根据对象的存活周期的不同将内存划分为几块,一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。
垃圾收集器
如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现。下图展示了7种不同分代的收集器,如果两个收集器之间存在连线,就说明他们可以搭配使用。并没有最好的收集器这一说,我们需要选择的是对具体应用最合适的收集器。
1、Serial收集器(用于新生代)
单线程,在进行垃圾收集时必须暂停其他所有的工作线程("Stop the World")。虚拟机运行在Client模式下的默认新生代收集器。简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程效率。
2、ParNew收集器(新生代)
ParNew收集器其实是Serial收集器的多线程版本,它是许多运行在Server模式下的虚拟机中首选的新生代收集器,因为除了Serial收集器外,目前只有它能与CMS收集器配合工作。
3、Parallel Scavenge收集器(“吞吐量优先”收集器)(新生代)
使用复制算法,并行多线程,这些特点与ParNew一样,它的独特之处是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目的则是达到一个可控制的吞吐量(Throughput),即CPU用于运行用户代码的时间与CPU总消耗时间的比值,吞吐量=运行用户代码时间 /(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,吞吐量就是99%。
停顿时间越短对于需要与用户交互的程序来说越好,良好的响应速度能提升用户的体验;
高吞吐量可以最高效率地利用CPU时间,尽快地完成程序的运算任务,主要适合在后台运算而不太需要太多交互的任务。
参数设置:
-XX:MaxGCPauseMillis 控制最大垃圾收集停顿时间。(大于0的毫秒数)停顿时间缩短是以牺牲吞吐量和新生代空间换取的。(新生代调的小,吞吐量跟着小,垃圾收集时间就短,停顿就小)。
-XX:GCTimeRatio 直接设置吞吐量大小,0<x<100 的整数,允许的最大GC时间=1/(1+x)。
-XX:+UseAdaptiveSizePolicy 一个开关参数,开启GC自适应调节策略(GC Ergonomics),将内存管理的调优任务(新生代大小-Xmn、Eden与Survivor区的比例-XX:SurvivorRatio、晋升老年代对象年龄-XX: PretenureSizeThreshold 、等细节参数)交给虚拟机完成。这是Parallel Scavenge收集器与ParNew收集器的一个重要区别,另一个是吞吐量。
4、Serial Old收集器(老年代)
它是Serial收集器的老年代版本,单线程,使用“标记-整理”算法。主要意义是被Client模式下的虚拟机使用。如果在Server模式下,它还有两大用途:在JDK1.5及之前的版本中与Parallel Scavenge收集器搭配使用;作为CMS 收集器的后备预案,在并发收集发生Concurrent Mode Failure的时候使用。运行过程同Serial收集器。
5、Parallel Old收集器(老年代)
它是Parallel Scavenge收集器的老年代版本,多线程,使用“标记-整理”算法。在注重吞吐量及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge+Parallel Old收集器。工作过程如下:
6、CMS收集器(Concurrent Mark Sweep)
它是一种以获取最短回收停顿时间为目标的收集器。优点:并发收集,低停顿。基于“标记-清除”算法。目前很大一部分Java应用都集中在互联网站或B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验,CMS收集器就非常符合这类应用的需求。运作过程较复杂,分为4个步骤:
初始标记(CMS initial mark):需要“Stop The World”,标记GC Roots能直接关联到的对象,速度快。
并发标记(CMS concurrent mark):进行GC Roots Tracing 过程
重新标记(CMS remark):需要“Stop The World”,修正并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录。停顿时间:初始标记<重新标记<<并发标记
并发清除(CMS concurrent sweep):时间较长。
缺点:
对CPU资源非常敏感,面向并发设计的程序都会对CPU资源较敏感。CMS默认的回收线程数: (CPU数量+3)/4
无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。并发清理阶段用户程序运行产生的垃圾过了标记阶段所以无法在本次收集中清理掉,称为浮动垃圾。CMS收集器默认在老年代使用了68%的空间后被激活。若老年代增长的不是很快,可以适当调高参数-XX:CMSInitiatingOccupancyFraction 提高触发百分比,但调得太高会容易导致“Concurrent Mode Failure”失败。
基于“标记-清除”算法会产生大量空间碎片。提供开关参数-XX:+UseCMSCompactAtFullCollection 用于在“ 享受”完Full GC服务之后进行碎片整理过程,内存整理的过程是无法并发的。但是停顿时间会变长。
-XX:CMSFullGCsBeforeCompation 设置在执行多少次不压缩的Full GC后,跟来来一次带压缩的。
7、G1收集器(Garbage First)
它是当前收集器技术发展的最前沿成果。与CMS相比有两个显著改进:
基于“标记-整理”算法实现收集器
非常精确地控制停顿
G1收集器可以在几乎不牺牲吞吐量的前提下完成低停顿的内存回收,这是由于它能够极力避免全区域的垃圾收集,之前的收集器进行收集的范围都是整个新生代或老年代,而G1将整个Java堆(包括新生代、老年代)划分为多个大小固定的独立区域(Region),并且跟踪这些区域里面的垃圾堆积程度,在后台维护一个优先列表,每次根据允许的收集时间,优先回收垃圾最多的区域(这就是Garbage First名称的由来)。区域划分、有优先级的区域回收,保证了G1收集器在有限的时间内可以获得最高的收集效率。
————————————————
版权声明:本文为CSDN博主「Pikaqiu_li」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/clover_lily/java/article/details/80160726