Java高级交流

【sentinel】深入浅出之原理篇StatisticSlot&

2019-03-18  本文已影响0人  一滴水的坚持

StatisticSlot则用于记录,统计不同纬度的 runtime 信息,在这里记录线程数变化,请求数量,计算RT时间,代码比较简单:

public class StatisticSlot extends AbstractLinkedProcessorSlot<DefaultNode> {

    @Override
    public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
                      boolean prioritized, Object... args) throws Throwable {
        try {

            fireEntry(context, resourceWrapper, node, count, prioritized, args);
            //请求通过,增加线程数
            node.increaseThreadNum();
            //增加请求通过数
            node.addPassRequest(count);
            //如果原始节点存在,则新增线程数和通过的请求总数
            if (context.getCurEntry().getOriginNode() != null) {
                context.getCurEntry().getOriginNode().increaseThreadNum();
                context.getCurEntry().getOriginNode().addPassRequest(count);
            }
            //如果是IN,则在Cluster节点上新增线程数和通过请求数,这个是全局的ClusterNode,和ClusterBuilderSlot的ClusterNode不一样,此处所有请求共享同一个Cluster
            if (resourceWrapper.getType() == EntryType.IN) {
                // Add count for global inbound entry node for global statistics.
                Constants.ENTRY_NODE.increaseThreadNum();
                Constants.ENTRY_NODE.addPassRequest(count);
            }
            //钩子函数
            for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {
                handler.onPass(context, resourceWrapper, node, count, args);
            }
        } catch (PriorityWaitException ex) {
            //增加线程数
            node.increaseThreadNum();
            if (context.getCurEntry().getOriginNode() != null) {
                context.getCurEntry().getOriginNode().increaseThreadNum();
            }
            //增加线程数 共享全局Cluster
            if (resourceWrapper.getType() == EntryType.IN) {
                Constants.ENTRY_NODE.increaseThreadNum();
            }
             //钩子函数
            for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {
                handler.onPass(context, resourceWrapper, node, count, args);
            }
        } catch (BlockException e) {
            context.getCurEntry().setError(e);
            //节点Block数量加一
            node.increaseBlockQps(count);
            if (context.getCurEntry().getOriginNode() != null) {
                context.getCurEntry().getOriginNode().increaseBlockQps(count);
            }
            if (resourceWrapper.getType() == EntryType.IN) {
                Constants.ENTRY_NODE.increaseBlockQps(count);
            }
            //钩子,扩展
            for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {
                handler.onBlocked(e, context, resourceWrapper, node, count, args);
            }

            throw e;
        } catch (Throwable e) {
            context.getCurEntry().setError(e);
            node.increaseExceptionQps(count);
            if (context.getCurEntry().getOriginNode() != null) {
                context.getCurEntry().getOriginNode().increaseExceptionQps(count);
            }

            if (resourceWrapper.getType() == EntryType.IN) {
                Constants.ENTRY_NODE.increaseExceptionQps(count);
            }
            throw e;
        }
    }

    @Override
    public void exit(Context context, ResourceWrapper resourceWrapper, int count, Object... args) {
        DefaultNode node = (DefaultNode)context.getCurNode();
        if (context.getCurEntry().getError() == null) {
            //计算响应时间,通过当前时间-CurEntry的创建时间取毫秒值
            long rt = TimeUtil.currentTimeMillis() - context.getCurEntry().getCreateTime();
            if (rt > Constants.TIME_DROP_VALVE) {
                rt = Constants.TIME_DROP_VALVE;
            }
            //新增响应时间和成功数
            node.addRtAndSuccess(rt, count);
            if (context.getCurEntry().getOriginNode() != null) {
                context.getCurEntry().getOriginNode().addRtAndSuccess(rt, count);
            }
            //线程数减1
            node.decreaseThreadNum();
            if (context.getCurEntry().getOriginNode() != null) {
                context.getCurEntry().getOriginNode().decreaseThreadNum();
            }
            //全局线程数-1
            if (resourceWrapper.getType() == EntryType.IN) {
                Constants.ENTRY_NODE.addRtAndSuccess(rt, count);
                Constants.ENTRY_NODE.decreaseThreadNum();
            }
        } else {
            // Error may happen.
        }
        //回调钩子
        Collection<ProcessorSlotExitCallback> exitCallbacks = StatisticSlotCallbackRegistry.getExitCallbacks();
        for (ProcessorSlotExitCallback handler : exitCallbacks) {
            handler.onExit(context, resourceWrapper, count, args);
        }
        fireExit(context, resourceWrapper, count);
    }
}

逻辑简单,但实现并不简单,先了解一下DefaultNode的Api:


public class DefaultNode extends StatisticNode {

   private ResourceWrapper id;
   private volatile Set<Node> childList = new HashSet<>();
   private ClusterNode clusterNode;

   @Override
   public void increaseBlockQps(int count) {
       super.increaseBlockQps(count);
       this.clusterNode.increaseBlockQps(count);
   }

   @Override
   public void increaseExceptionQps(int count) {
       super.increaseExceptionQps(count);
       this.clusterNode.increaseExceptionQps(count);
   }

   @Override
   public void addRtAndSuccess(long rt, int successCount) {
       super.addRtAndSuccess(rt, successCount);
       this.clusterNode.addRtAndSuccess(rt, successCount);
   }

   @Override
   public void increaseThreadNum() {
       super.increaseThreadNum();
       this.clusterNode.increaseThreadNum();
   }

   @Override
   public void decreaseThreadNum() {
       super.decreaseThreadNum();
       this.clusterNode.decreaseThreadNum();
   }

   @Override
   public void addPassRequest(int count) {
       super.addPassRequest(count);
       this.clusterNode.addPassRequest(count);
   }

   private void visitTree(int level, DefaultNode node) {
       for (int i = 0; i < level; ++i) {
           System.out.print("-");
       }
       if (!(node instanceof EntranceNode)) {
           System.out.println(
               String.format("%s(thread:%s pq:%s bq:%s tq:%s rt:%s 1mp:%s 1mb:%s 1mt:%s)", node.id.getShowName(),
                   node.curThreadNum(), node.passQps(), node.blockQps(), node.totalQps(), node.avgRt(),
                   node.totalRequest() - node.blockRequest(), node.blockRequest(), node.totalRequest()));
       } else {
           System.out.println(
               String.format("Entry-%s(t:%s pq:%s bq:%s tq:%s rt:%s 1mp:%s 1mb:%s 1mt:%s)", node.id.getShowName(),
                   node.curThreadNum(), node.passQps(), node.blockQps(), node.totalQps(), node.avgRt(),
                   node.totalRequest() - node.blockRequest(), node.blockRequest(), node.totalRequest()));
       }
       for (Node n : node.getChildList()) {
           DefaultNode dn = (DefaultNode)n;
           visitTree(level + 1, dn);
       }
   }

}

上文链接 ClusterBuilderSlot原理介绍已经提到过,一个ContextName对应的同一个Resource对应ClusterNode为同一个,所以这里同步新增,或减少记录数,都是基于当前节点和对应的ClusterNode一起统计的。
不管是ClusterNode,或者DefaultNode节点,对其添加,或记录Qps,rt都是基于父类去实现,这样来讲,所有Sentinel最核心的代码就在StatisticNode中。


StatisticNode中,是这样注释的:

Sentinel使用滑动窗口来记录和统计实时调用数据。


理解StatisticNode节点之前,先了解几个数据结构:

public abstract class LeapArray<T> {
    //单位时间窗口长度
    protected int windowLengthInMs;
    //总的桶个数
    protected int sampleCount;
    //总的时间长度
    protected int intervalInMs;
    //记录的窗口数,长度与sampleCount一样
    protected final AtomicReferenceArray<WindowWrap<T>> array;
}

构造方法如下:

public LeapArray(int sampleCount, int intervalInMs) {
    //每ms的窗口长度为总的时间长度/桶的总数
    this.windowLengthInMs = intervalInMs / sampleCount;
    this.intervalInMs = intervalInMs;
    this.sampleCount = sampleCount;
    //记录每个windowLengthInMs的滑动窗口信息
    this.array = new AtomicReferenceArray<>(sampleCount);
}

而在WindowWrap中,则记录了该窗口的开始时间,和时长,和该时间窗口的数据信息。

public class WindowWrap<T> {
    //窗口长度
    private final long windowLengthInMs;
    //窗口开始时间 long类型,
    private long windowStart;
    //data数据
    private T value;
    //复位该时间窗口
    public WindowWrap<T> resetTo(long startTime) {
        this.windowStart = startTime;
        return this;
    }
    //判断是否该时间在该窗口内
    public boolean isTimeInWindow(long timeMillis) {
        return windowStart <= timeMillis && timeMillis < windowStart + windowLengthInMs;
    }
}

继续回到 LeapArray,看看如何根据时间找到该窗口:

public WindowWrap<T> currentWindow(long timeMillis) {
    if (timeMillis < 0) {
        return null;
    }
    //计算当前时间的时间窗口的位置
    int idx = calculateTimeIdx(timeMillis);
    //计算当前时间窗口的开始时间
    long windowStart = calculateWindowStart(timeMillis);
    while (true) {
        //取该下表对应的时间窗口
        WindowWrap<T> old = array.get(idx);
        if (old == null) {
            //不存在,则创建一个新的
            WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket());
            if (array.compareAndSet(idx, null, window)) {
                return window;
            } else {
                //如果失败,则代表有其他的线程再创建,放弃时间片
                Thread.yield();
            }
        } else if (windowStart == old.windowStart()) {
            如果是这个窗口的开始时间,则直接返回
            return old;
        } else if (windowStart > old.windowStart()) {
            //如果当前时间的窗口开始时间>老的时间窗口,则重置该时间窗口时间
            // 防止并发,加重入锁
            if (updateLock.tryLock()) {
                try {
                    return resetWindowTo(old, windowStart);
                } finally {
                    updateLock.unlock();
                }
            } else {
                //失败则代表锁已经被其他线程占用
                Thread.yield();
            }
        } else if (windowStart < old.windowStart()) {
            return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket());
        }
    }
}

而在StatisticNode节点中,实质也是使用LeapArray来存储,从LeapArray中获取MetricBucket,对QPS,请求线程数,rt时间等坐记录。
再来看一下StatisticNode的定义:

public class StatisticNode implements Node {
    //每秒的滚动计数器 SAMPLE_COUNT为2对应LeapArray中的sample count,IntervalProperty.INTERVAL为1000代表1s,1s分为两个桶,保存数据。
    private transient volatile Metric rollingCounterInSecond = new ArrayMetric(SampleCountProperty.SAMPLE_COUNT,
        IntervalProperty.INTERVAL);
    //每分钟的滚动计数器1分钟分为60个记录,1分钟一个。
    private transient Metric rollingCounterInMinute = new ArrayMetric(60, 60 * 1000, false);
    //当前线程数
    private AtomicInteger curThreadNum = new AtomicInteger(0);
    //最后一次metrics被获取的时间
    private long lastFetchTime = -1;
}

所以,在添加rt时间,qps,BlockQps等实质都是使用LeapArray的当前窗口去做添加

//StatisticNode.java
@Override
public void addPassRequest(int count) {
    rollingCounterInSecond.addPass(count);
    rollingCounterInMinute.addPass(count);
}

@Override
public void addRtAndSuccess(long rt, int successCount) {
    rollingCounterInSecond.addSuccess(successCount);
    rollingCounterInSecond.addRT(rt);
    rollingCounterInMinute.addSuccess(successCount);
    rollingCounterInMinute.addRT(rt);
}
@Override
public void increaseBlockQps(int count) {
    rollingCounterInSecond.addBlock(count);
    rollingCounterInMinute.addBlock(count);
}
@Override
public void increaseExceptionQps(int count) {
    rollingCounterInSecond.addException(count);
    rollingCounterInMinute.addException(count);
}   
@Override
public void addBlock(int count) {
    WindowWrap<MetricBucket> wrap = data.currentWindow();
    wrap.value().addBlock(count);
}

@Override
public void addSuccess(int count) {
    //当前窗口
    WindowWrap<MetricBucket> wrap = data.currentWindow();
    wrap.value().addSuccess(count);
}

@Override
public void addPass(int count) {
    WindowWrap<MetricBucket> wrap = data.currentWindow();
    wrap.value().addPass(count);
}

@Override
public void addRT(long rt) {
    WindowWrap<MetricBucket> wrap = data.currentWindow();
    wrap.value().addRT(rt);
}

https://www.jianshu.com/p/6ee4b7bdb844 这篇博客对滑动窗口讲的比较细,可以看看。

上一篇 下一篇

猜你喜欢

热点阅读