索引很重要,记得建表之初加索引

2017-03-10  本文已影响0人  imo浩

设计表之初最好就把索引建立完成,根据where后面的条件,简单把索引建立起来

这样表还原到生产库的时候,索引随着建表语句就建立完成了,要不然就会陷入一个表一个表create index的困境,手动创建索引很痛苦。

手动创建索引的sql语句~

CREATE INDEX ORDER_ID_INDEX ON saf_house_order_pay_info (order_id);

CREATE INDEX AMOUNT_INDEX ON saf_house_order_pay_info (amount);

查看索引show index from table_name;即可

附 btree索引与hash索引的解析【主流btree索引】

Hash索引

所谓Hash索引,当我们要给某张表某列增加索引时,将这张表的这一列进行哈希算法计算,得到哈希值,排序在哈希数组上。所以Hash索引可以一次定位,其效率很高,而Btree索引需要经过多次的磁盘IO,但是innodb和myisam之所以没有采用它,是因为它存在着好多缺点:

1、因为Hash索引比较的是经过Hash计算的值,所以只能进行等式比较,不能用于范围查询

1、每次都要全表扫描

2、由于哈希值是按照顺序排列的,但是哈希值映射的真正数据在哈希表中就不一定按照顺序排列,所以无法利用Hash索引来加速任何排序操作

3、不能用部分索引键来搜索,因为组合索引在计算哈希值的时候是一起计算的。

4、当哈希值大量重复且数据量非常大时,其检索效率并没有Btree索引高的。

Btree索引

至于Btree索引,它是以B+树为存储结构实现的。

但是Btree索引的存储结构在Innodb和MyISAM中有很大区别。

在MyISAM中,我们如果要对某张表的某列建立Btree索引的话,如图:

所以我们经常会说MyISAM中数据文件和索引文件是分开的。

因此MyISAM的索引方式也称为非聚集,Innodb的索引方式成为聚集索引。

至于辅助索引,类似于主索引,唯一区别就是主索引上的值不能重复,而辅助索引可以重复。

因此当我们根据Btree索引去搜索的时候,若key存在,在data域找到其地址,然后根据地址去表中查找数据记录。

至于Innodb它跟上面又有很大不同,它的叶子节点存储的并不是表的地址,而是数据

我们可以看到这里并没有将地址放入叶子节点,而是直接放入了对应的数据,这也就是我们平常说到的,Innodb的索引文件就是数据文件,

那么对于Innodb的辅助索引结构跟主索引也相差很多,如图:

我们可以发现,这里叶子节点存储的是主键的信息,所以我们在利用辅助索引的时候,检索到主键信息,然后再通过主键去主索引中定位表中的数据,这就可以说明Innodb中主键之所以不宜用过长的字段,由于所有的辅助索引都包含主索引,所以很容易让辅助索引变得庞大。

我们还可以发现:在Innodb中尽量使用自增的主键,这样每次增加数据时只需要在后面添加即可,非单调的主键在插入时会需要维持B+tree特性而进行分裂调整,十分低效。

Btree索引中的最左匹配原则:

Btree是按照从左到右的顺序来建立搜索树的。比如索引是(name,age,sex),会先检查name字段,如果name字段相同再去检查后两个字段。

所以当传进来的是后两个字段的数据(age,sex),因为建立搜索树的时候是按照第一个字段建立的,所以必须根据name字段才能知道下一个字段去哪里查询。

所以传进来的是(name,sex)时,首先会根据name指定搜索方向,但是第二个字段缺失,所以将name字段正确的都找到后,然后才会去匹配sex的数据。

建立索引的规则:

1、利用最左前缀:Mysql会一直向右查找直到遇到范围操作(>,<,like、between)就停止匹配。比如a=1 and b=2 and c>3 and d=6;此时如果建立了(a,b,c,d)索引,那么后面的d索引是完全没有用到,当换成了(a,b,d,c)就可以用到。

2、不能过度索引:在修改表内容的时候,索引必须更新或者重构,所以索引过多时,会消耗更多的时间。

3、尽量扩展索引而不要新建索引

4、最适合的索引的列是出现在where子句中的列或连接子句中指定的列。

5、不同值较少的列不必要建立索引(性别)。

上一篇下一篇

猜你喜欢

热点阅读