日经题

2020-10-01  本文已影响0人  洛玖言

函数 f(x)[0,1] 上一阶可导, f(0)=f(1)=0 . 证明
\int_{0}^1f^2(x)\text{d}x\leqslant c\int_0^{1}f'^2(x)\text{d}x.
其中 c 分别为 \dfrac{1}{2},\;\dfrac{1}{4},\;\dfrac{1}{8}

Sol:
因为 f(0)=0
因此 f(x)=\displaystyle\int_0^xf'(x)\text{d}x .
\begin{aligned} f^2(x)=&\Bigg(\int_0^xf'(t)\text{d}t\Bigg)^2\\ \leqslant& x\int_0^{x}f'^2(t)\text{d}t\quad(Cauchy-Schwarz)\\ \leqslant& x\int_0^1f'^2(t)\text{d}t\quad(x\in(0,1))\\ \end{aligned}
因此
\begin{aligned} \int_0^1f^2(x)\text{d}x\leqslant&\int_0^1x\text{d}x\cdot\int_0^1f'^2(t)\text{d}t=\dfrac{1}{2}\int_0^1f'^2(t)\text{d}t \end{aligned}
由此证明了 c=\dfrac{1}{2} 的情况.

又有
\begin{aligned} f^2(x)=\Bigg(\int_x^1f'(t)\text{d}t\Bigg)^2\leqslant(1-x)\int_x^1f'^2(t)\text{d}t\leqslant(1-x)\int_0^1f'^2(t)\text{d}t\quad(x\in(0,1)) \end{aligned}

因此
\begin{aligned} \int_0^1f^2(x)\text{d}x=&\int_0^{\frac{1}{2}}f^2(x)\text{d}x+\int_{\frac{1}{2}}^1f^2(x)\text{d}x\\ \leqslant&\int_0^{\frac{1}{2}}x\text{d}x\cdot\int_0^{1}f'^2(t)\text{d}t+\int_{\frac{1}{2}}^1(1-x)\text{d}x\cdot\int_0^{1}f'^2(t)\text{d}t\\ =&\dfrac{1}{8}\int_0^{1}f'^2(t)\text{d}t+\dfrac{1}{8}\int_0^{1}f'^2(t)\text{d}t=\dfrac{1}{4}\int_0^{1}f'^2(t)\text{d}t \end{aligned}
由此证明了 c=\dfrac{1}{4} 的情况. 微调上面的两个不等式得
\displaystyle f^2(x)\leqslant x\int_0^{\frac{1}{2}}f'^2(t)\text{d}t\quad(x\in(0,\frac{1}{2})),\quad\quad
\displaystyle f^2(x)\leqslant (1-x)\int_{\frac{1}{2}}^1f'^2(t)\text{d}t\quad(x\in(\frac{1}{2},1))
由此得
\begin{aligned} \int_0^1f^2(x)\text{d}x=&\int_0^{\frac{1}{2}}f^2(x)\text{d}x+\int_{\frac{1}{2}}^1f^2(x)\text{d}x\\ \leqslant&\int_0^{\frac{1}{2}}x\text{d}x\cdot\int_0^{\frac{1}{2}}f'^2(t)\text{d}t+\int_{\frac{1}{2}}^1(1-x)\text{d}x\cdot\int_\frac{1}{2}^{1}f'^2(t)\text{d}t\\ =&\dfrac{1}{8}\int_0^{\frac{1}{2}}f'^2(t)\text{d}t+\dfrac{1}{8}\int_{\frac{1}{2}}^{1}f'^2(t)\text{d}t\\ =&\dfrac{1}{8}\int_0^{1}f'^2(t)\text{d}t \end{aligned}
由此证明了 c=\dfrac{1}{8} 的情况.

上一篇 下一篇

猜你喜欢

热点阅读