算法面试排序算法

算法简单学习(十一)—— 快速排序算法

2017-09-03  本文已影响962人  刀客传奇

版本记录

版本号 时间
V1.0 2017.08.22

前言

将数据结构和算法比作计算机的基石毫不为过,追求程序的高效是每一个软件工程师的梦想。下面就是我对算法方面的基础知识理论与实践的总结。感兴趣的可以看上面几篇。
1. 算法简单学习(一)—— 前言
2. 算法简单学习(二)—— 一个简单的插入排序
3. 算法简单学习(三)—— 分治法与合并排序
4. 算法简单学习(四)—— 冒泡排序
5. 算法简单学习(五)—— 函数的增长
6. 算法简单学习(六)—— 常用的几种相关函数
7. 算法简单学习(七)—— 递归式
8. 算法简单学习(八)—— 堆排序
9. 算法简单学习(九)—— 建堆与堆排序算法
10. 算法简单学习(十)—— 基于堆的优先级队列

基本简介和基本原理

快速排序(Quicksort)是对冒泡排序的一种改进。

快速排序由C. A. R. Hoare1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

设要排序的数组是A[0] …… A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。

一趟快速排序的算法是:


排序演示

假设用户输入了如下数组:

创建变量i=0(指向第一个数据), j=5(指向最后一个数据), k=6(赋值为第一个数据的值)。

我们要把所有比k小的数移动到k的左面,所以我们可以开始寻找比6小的数,从j开始,从右往左找,不断递减变量j的值,我们找到第一个下标3的数据比6小,于是把数据3移到下标0的位置,把下标0的数据6移到下标3,完成第一次比较:

此时,i=0 j=3 k=6

接着,开始第二次比较,这次要变成找比k大的了,而且要从前往后找了。递加变量i,发现下标2的数据是第一个比k大的,于是用下标2的数据7和j指向的下标3的数据的6做交换,数据状态变成下表:

此时,i=2 j=3 k=6

称上面两次比较为一个循环。

接着,再递减变量j,不断重复进行上面的循环比较。
在本例中,我们进行一次循环,就发现i和j“碰头”了:他们都指向了下标2。于是,第一遍比较结束。得到结果如下,凡是k(=6)左边的数都比它小,凡是k右边的数都比它大:

如果i和j没有碰头的话,就递加i找大的,还没有,就再递减j找小的,如此反复,不断循环。注意判断和寻找是同时进行的。

然后,对k两边的数据,再分组分别进行上述的过程,直到不能再分组为止。

注意:第一遍快速排序不会直接得到最终结果,只会把比k大和比k小的数分到k的两边。为了得到最后结果,需要再次对下标2两边的数组分别执行此步骤,然后再分解数组,直到数组不能再分解为止(只有一个数据),才能得到正确结果。


代码实现

这里我就用C语言实现以下。

/**
 快速排序算法
 */

void sort(int a[6], int left, int right)
{
    //如果左边索引大于或者等于右边的索引就代表已经整理完成一个组了
    if(left >= right)
    {
        return ;
    }
    int i = left;
    int j = right;
    int key = a[left];
    
    /*控制在当组内寻找一遍*/
    while(i < j)
    {
        while(i < j && key <= a[j])
        /*而寻找结束的条件就是,1,找到一个小于或者大于key的数(大于或小于取决于你想升
         序还是降序)2,没有符合条件1的,并且i与j的大小没有反转*/
        {
            //向前寻找
            j--;
        }
        
        a[i] = a[j];
        /*找到一个这样的数后就把它赋给前面的被拿走的i的值(如果第一次循环且key是
         a[left],那么就是给key)*/
        
        while(i < j && key >= a[i])
        /*这是i在当组内向前寻找,同上,不过注意与key的大小关系停止循环和上面相反,
         因为排序思想是把数往两边扔,所以左右两边的数大小与key的关系相反*/
        {
            i++;
        }
        
        a[j] = a[i];
    }
    
    /*当在当组内找完一遍以后就把中间数key回归*/
    a[i] = key;
    
    /*最后用同样的方式对分出来的左边的小组进行同上的做法*/
    sort(a, left, i - 1);
    
    /*用同样的方式对分出来的右边的小组进行同上的做法*/
    sort(a, i + 1, right);
    
    /*当然最后可能会出现很多分左右,直到每一组的i = j 为止*/
}

int main(int argc, const char * argv[])
{
    int a[6] = {1, 10, 8, 7, 4, 3};
    sort(a, 0, 5);
    
    for (int i = 0; i < 6; i ++) {
        printf("i = %d\n",a[i]);
    }
}

下面看输出结果

i = 1
i = 3
i = 4
i = 7
i = 8
i = 10
Program ended with exit code: 0

大家可以看到,可以实现快速排序。


算法优化

1. 三平均分区法

关于这一改进的最简单的描述大概是这样的:与一般的快速排序方法不同,它并不是选择待排数组的第一个数作为中轴,而是选用待排数组最左边、最右边和最中间的三个元素的中间值作为中轴。这一改进对于原来的快速排序算法来说,主要有两点优势:

2. 根据分区大小调整算法

这一方面的改进是针对快速排序算法的弱点进行的。快速排序对于小规模的数据集性能不是很好。可能有人认为可以忽略这个缺点不计,因为大多数排序都只要考虑大规模的适应性就行了。但是快速排序算法使用了分治技术,最终来说大的数据集都要分为小的数据集来进行处理。由此可以得到的改进就是,当数据集较小时,不必继续递归调用快速排序算法,而改为调用其他的对于小规模数据集处理能力较强的排序算法来完成。Introsort就是这样的一种算法,它开始采用快速排序算法进行排序,当递归达到一定深度时就改为堆排序来处理。这样就克服了快速排序在小规模数据集处理中复杂的中轴选择,也确保了堆排序在最坏情况下O(n log n)的复杂度。

另一种优化改进是当分区的规模达到一定小时,便停止快速排序算法。也即快速排序算法的最终产物是一个“几乎”排序完成的有序数列。数列中有部分元素并没有排到最终的有序序列的位置上,但是这种元素并不多。可以对这种“几乎”完成排序的数列使用插入排序算法进行排序以最终完成整个排序过程。因为插入排序对于这种“几乎”完成的排序数列有着接近线性的复杂度。这一改进被证明比持续使用快速排序算法要有效的多。

另一种快速排序的改进策略是在递归排序子分区的时候,总是选择优先排序那个最小的分区。这个选择能够更加有效的利用存储空间从而从整体上加速算法的执行。

3. 不同的分区方案考虑

对于快速排序算法来说,实际上大量的时间都消耗在了分区上面,因此一个好的分区实现是非常重要的。尤其是当要分区的所有的元素值都相等时,一般的快速排序算法就陷入了最坏的一种情况,也即反复的交换相同的元素并返回最差的中轴值。无论是任何数据集,只要它们中包含了很多相同的元素的话,这都是一个严重的问题,因为许多“底层”的分区都会变得完全一样。

对于这种情况的一种改进办法就是将分区分为三块而不是原来的两块:一块是小于中轴值的所有元素,一块是等于中轴值的所有元素,另一块是大于中轴值的所有元素。另一种简单的改进方法是,当分区完成后,如果发现最左和最右两个元素值相等的话就避免递归调用而采用其他的排序算法来完成。

4. 并行的快速排序

由于快速排序算法是采用分治技术来进行实现的,这就使得它很容易能够在多台处理机上并行处理。

在大多数情况下,创建一个线程所需要的时间要远远大于两个元素比较和交换的时间,因此,快速排序的并行算法不可能为每个分区都创建一个新的线程。一般来说,会在实现代码中设定一个阀值,如果分区的元素数目多于该阀值的话,就创建一个新的线程来处理这个分区的排序,否则的话就进行递归调用来排序。

对于这一并行快速排序算法也有其改进。该算法的主要问题在于,分区的这一步骤总是要在子序列并行处理之前完成,这就限制了整个算法的并行程度。解决方法就是将分区这一步骤也并行处理。改进后的并行快速排序算法使用2n个指针来并行处理分区这一步骤,从而增加算法的并行程度。


快速排序算法的变种

1. 随机化快排

快速排序的最坏情况基于每次划分对主元的选择。基本的快速排序选取第一个元素作为主元。这样在数组已经有序的情况下,每次划分将得到最坏的结果。一种比较常见的优化方法是随机化算法,即随机选取一个元素作为主元。这种情况下虽然最坏情况仍然是O(n^2),

但最坏情况不再依赖于输入数据,而是由于随机函数取值不佳。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。一位前辈做出了一个精辟的总结:“随机化快速排序可以满足一个人一辈子的人品需求。

随机化快速排序的唯一缺点在于,一旦输入数据中有很多的相同数据,随机化的效果将直接减弱。对于极限情况,即对于n个相同的数排序,随机化快速排序的时间复杂度将毫无疑问的降低到O(n^2)。解决方法是用一种方法进行扫描,使没有交换的情况下主元保留在原位置。

2. 平衡快排

每次尽可能地选择一个能够代表中值的元素作为关键数据,然后遵循普通快排的原则进行比较、替换和递归。通常来说,选择这个数据的方法是取开头、结尾、中间3个数据,通过比较选出其中的中值。取这3个值的好处是在实际问题中,出现近似顺序数据或逆序数据的概率较大,此时中间数据必然成为中值,而也是事实上的近似中值。万一遇到正好中间大两边小(或反之)的数据,取的值都接近最值,那么由于至少能将两部分分开,实际效率也会有2倍左右的增加,而且利于将数据略微打乱,破坏退化的结构。

3. 外部快排

与普通快排不同的是,关键数据是一段buffer,首先将之前和之后的M/2个元素读入buffer并对该buffer中的这些元素进行排序,然后从被排序数组的开头(或者结尾)读入下一个元素,假如这个元素小于buffer中最小的元素,把它写到最开头的空位上;假如这个元素大于buffer中最大的元素,则写到最后的空位上;否则把buffer中最大或者最小的元素写入数组,并把这个元素放在buffer里。保持最大值低于这些关键数据,最小值高于这些关键数据,从而避免对已经有序的中间的数据进行重排。完成后,数组的中间空位必然空出,把这个buffer写入数组中间空位。然后递归地对外部更小的部分,循环地对其他部分进行排序。

4. 三路基数快排

Three-way Radix Quicksort,也称作Multikey Quicksort、Multi-key Quicksort):结合了基数排序(radix sort,如一般的字符串比较排序就是基数排序)和快排的特点,是字符串排序中比较高效的算法。该算法被排序数组的元素具有一个特点,即multikey,如一个字符串,每个字母可以看作是一个key。算法每次在被排序数组中任意选择一个元素作为关键数据,首先仅考虑这个元素的第一个key(字母),然后把其他元素通过key的比较分成小于、等于、大于关键数据的三个部分。然后递归地基于这一个key位置对“小于”和“大于”部分进行排序,基于下一个key对“等于”部分进行排序。


时间复杂度分析

后记

未完,待续~~~

上一篇下一篇

猜你喜欢

热点阅读