嘘!异步事件这样用真的好么?

2020-06-29  本文已影响0人  猿天地

故事背景

今年年初的时候写了一篇文章 《围观:基于事件机制的内部解耦之心路历程》。这篇文章主要讲的是用 ES 数据异构的场景。程序订阅 Mysql Binlog 的变更,然后程序内部使用 Spring Event 来分发具体的事件,因为一个表的数据变更可能会需要更新多个 ES 索引。

为了方便大家理解我把之前方案的图片复制过来了,如下:

上图的方案存在一个问题,就是我们今天文章要聊的内容。

这个问题就是当 MQ Consumer 收到消息后,就直接发布 Event 了,如果是同步的,没有问题。如果某个 EventListener 中处理失败了,那么这条消息将不会 ACK。

如果是异步发布 Event 的场景,发布完消息马上就 ACK 了。就算某个 EventListener 中处理失败了,MQ 也感知不到,不会进行消息的重新投递,这就是存在的问题。

解决方案

方案一

既然消息已经 ACK 了,那就不利用 MQ 的重试功能了,使用方自己重试是不是也可以呢?

可肯定是可以的,内部处理是否成功肯定是可以知道的,如果处理失败了可以默认重试,或者有一定策略的重试。实在不行还可以落库,保存记录。

这样的问题在于太烦了呀,每个使用的地方都要去做这件事情,而且对于未来接手你代码的程序小哥哥来说,这很有可能让小哥哥头发慢慢脱落啊。。。。

脱落不要紧,关键他还不知道要做这个处理,说不定哪天就背锅了,惨兮兮。。。。

方案二

要保证消息和业务处理的一致性,就不能立马进行 ACK 操作。而是要等业务处理完成后再决定是否要 ACK。

如果有处理失败的就不应该 ACK,这样就能复用 MQ 的重试机制了。

分析下来,这就是一个典型的异步转同步的场景。像 Dubbo 中也有这个场景,所以我们可以借鉴 Dubbo 中的实现思路。

创建一个 DefaultFuture 用于同步等待获取任务执行结果。然后在 MQ 消费的地方使用 DefaultFuture。

@Service
@RocketMQMessageListener(topic = "${rocketmq.topic.data_change}", consumerGroup = "${rocketmq.group.data_change_consumer}")
public class DataChangeConsume implements RocketMQListener<DataChangeRequest> {
    @Autowired
    private ApplicationContext applicationContext;
    @Autowired
    private CustomApplicationContextAware customApplicationContextAware;
    @Override
    public void onMessage(DataChangeRequest dataChangeRequest) {
        log.info("received message {} , Thread {}", dataChangeRequest, Thread.currentThread().getName());
        DataChangeEvent event = new DataChangeEvent(this);
        event.setChangeType(dataChangeRequest.getChangeType());
        event.setTable(dataChangeRequest.getTable());
        event.setMessageId(dataChangeRequest.getMessageId());
        DefaultFuture defaultFuture = DefaultFuture.newFuture(dataChangeRequest, customApplicationContextAware.getTaskCount(), 6000 * 10);
        applicationContext.publishEvent(event);
        Boolean result = defaultFuture.get();
        log.info("MessageId {} 处理结果 {}", dataChangeRequest.getMessageId(), result);
        if (!result) {
            throw new RuntimeException("处理失败,不进行消息ACK,等待下次重试");
        }
    }
}

newFuture() 会传入事件参数,超时时间,任务数量几个参数。任务数量是用于判断所有 EventListener 是否全部执行完成。

defaultFuture.get(); 这不就会阻塞,等待所有任务执行完成才会返回结果,如果所有业务都处理成功了,那么会返回 true,流程结束,消息自动 ACK。

如果返回了 false 证明有处理失败的或者超时的,就不需要 ACK 了,抛出异常等待重试。

public Boolean get() {
    if (isDone()) {
        return true;
    }
    long start = System.currentTimeMillis();
    lock.lock();
    try {
        while (!isDone()) {
            done.await(timeout, TimeUnit.MILLISECONDS);
            // 有失败的任务反馈
            if (!isSuccessDone()) {
                return false;
            }
            // 全部执行成功
            if (isDone()) {
                return true;
            }
            // 超时
            if (System.currentTimeMillis() - start > timeout) {
                return false;
            }
        }
    } catch (InterruptedException e) {
        throw new RuntimeException(e);
    } finally {
        lock.unlock();
    }
    return true;
}

isDone() 会判断反馈结果了的任务数量跟总数量是否一致,如果一直就说明全部执行完成了。

public boolean isDone() {
    return feedbackResultCount.get() == taskCount;
}

那么任务执行完了怎么反馈呢? 不可能让每个使用的方法去关心,所以我们定义了一个切面来做这件事情。

@Aspect
@Component
public class EventListenerAspect {
    @Around(value = "@annotation(eventListener)")
    public Object aroundAdvice(ProceedingJoinPoint joinpoint, EventListener eventListener) throws Throwable {
      DataChangeEvent event = null;
      boolean executeResult = true;
       try {
         event = (DataChangeEvent)joinpoint.getArgs()[0];
         Object result = joinpoint.proceed();
         return result;
      } catch (Exception e) {
         executeResult = false;
          throw e;
      } finally {
         DefaultFuture.received(event.getMessageId(), executeResult);
      }
    }
}

通过 DefaultFuture.received() 反馈执行结果。

public static void received(String id, boolean result) {
    DefaultFuture future = FUTURES.get(id);
    if (future != null) {
        // 累加失败任务数量
        if (!result) {
            future.feedbackFailResultCount.incrementAndGet();
        }
        // 累加执行完成任务数量
        future.feedbackResultCount.incrementAndGet();
        if (future.isDone()) {
            FUTURES.remove(id);
            future.doReceived();
        }
    }
}
private void doReceived() {
    lock.lock();
    try {
        if (done != null) {
            // 唤醒阻塞的线程
            done.signal();
        }
    } finally {
        lock.unlock();
    }
}

下面我们来总结整个流程:

需要注意的是每个 EventListener 内部消费的逻辑都要做幂等控制。

源码地址:https://github.com/yinjihuan/kitty-cloud/tree/master/kitty-cloud-mqconsume

关于作者:尹吉欢,简单的技术爱好者,《Spring Cloud 微服务-全栈技术与案例解析》, 《Spring Cloud 微服务 入门 实战与进阶》作者, 公众号 猿天地 发起人。个人微信 jihuan900,欢迎勾搭。

上一篇下一篇

猜你喜欢

热点阅读