特征离散化方法及LR逻辑回归
连续性变量转化成离散型变量大致有两类方法:
(1)卡方检验方法;
(2)信息增益方法;
一: 卡方检验方法
1.1 分裂方法
1.2 合并方法
分裂方法,就是找到一个分裂点看,左右2个区间,在目标值上分布是否有显著差异,有显著差异就分裂,否则就忽略。这个点可以每次找差异最大的点。合并类似,先划分如果很小单元区间,按顺序合并在目标值上分布不显著的相邻区间,直到收敛。
二:信息增益方法
2.1 分裂方法
2.2 合并方法
这个和决策树的学习很类似。分裂方法,就是找到一个分裂点看,左右2个区间,看分裂前后信息增益变化阈值,如果差值超过阈值(正值,分列前-分裂后信息熵),则分裂。每次找差值最大的点做分裂点,直到收敛。合并类似,先划分如果很小单元区间,按顺序合并信息增益小于阈值的相邻区间,直到收敛。
逻辑回归LR的特征为什么要先离散化
在工业界,很少直接将连续值作为特征喂给逻辑回归模型,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:
-
稀疏向量内积乘法运算速度快,计算结果方便存储,容易scalable(扩展)。
-
离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰。
-
逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合。
-
离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力。
-
特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问。
李沐少帅指出,模型是使用离散特征还是连续特征,其实是一个“海量离散特征+简单模型” 同 “少量连续特征+复杂模型”的权衡。既可以离散化用线性模型,也可以用连续特征加深度学习。就看是喜欢折腾特征还是折腾模型了。通常来说,前者容易,而且可以n个人一起并行做,有成功经验;后者目前看很赞,能走多远还须拭目以待。
大概的理解:
1)计算简单
2)简化模型
3)增强模型的泛化能力,不易受噪声的影响