机器学习之Python数据可视化
2017-10-27 本文已影响0人
NextStepPeng
1、先导入一个包,训练模型使用
备注:先要完成数据的预处理(数据导入和分割,X_train, X_text, Y_train, Y_test)为分割好的数据
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, Y_train)
2、通过X_text, Y_test预测结果、检验结果
y_pred = regressor.predict(X_text)

3、数据可视化
plt.scatter(X_train,Y_train,color = 'red')
plt.title = ('Salary vs Experience(Training set)') #Y轴 X轴 哪个组的数据(测试组)
plt.plot(X_train, regressor.predict(X_train),color = 'blue')#斜率线蓝色
plt.xlabel = ('Years of experience(Tranining set)')#X轴 工作经验
plt.ylabel = ('Salary')#Y轴 薪水
plt.show()
