Zookeeper客户端Curator实现分布式锁及源码分析

2020-11-26  本文已影响0人  超_onlyu

API说明

InterProcessMutex有两个构造方法

public InterProcessMutex(CuratorFramework client, String path) {
    this(client, path, new StandardLockInternalsDriver());
}

public InterProcessMutex(CuratorFramework client, String path, LockInternalsDriver driver) {
    this(client, path, LOCK_NAME, 1, driver);
}

参数说明

参数 说明
client curator中zk客户端对象
path 抢锁路径,同一个锁path需一致
driver 可自定义lock驱动实现分布式锁

主要方法

//获取锁,若失败则阻塞等待直到成功,支持重入
public void acquire() throws Exception
//超时获取锁,超时失败
public boolean acquire(long time, TimeUnit unit) throws Exception
//释放锁
public void release() throws Exception

注意:调用acquire()方法后需相应调用release()来释放锁

使用简介

下面的例子模拟了100个线程同时抢锁,抢锁成功的线程睡眠1秒钟后释放锁,通知其他等待的线程重新抢锁,比较简单,不多说

public class InterprocessLock {
    static CountDownLatch countDownLatch = new CountDownLatch(10);

    public static void main(String[] args)  {
        CuratorFramework zkClient = getZkClient();
        String lockPath = "/lock";
        InterProcessMutex lock = new InterProcessMutex(zkClient, lockPath);
        //模拟100个线程抢锁
        for (int i = 0; i < 100; i++) {
            new Thread(new TestThread(i, lock)).start();
        }
    }

    static class TestThread implements Runnable {
        private Integer threadFlag;
        private InterProcessMutex lock;

        public TestThread(Integer threadFlag, InterProcessMutex lock) {
            this.threadFlag = threadFlag;
            this.lock = lock;
        }

        @Override
        public void run() {
            try {
                lock.acquire();
                System.out.println("第"+threadFlag+"线程获取到了锁");
                //等到1秒后释放锁
                Thread.sleep(1000);
            } catch (Exception e) {
                e.printStackTrace();
            }finally {
                try {
                    lock.release();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }
    }

    private static CuratorFramework getZkClient() {
        String zkServerAddress = "127.0.0.1:2182,127.0.0.1:2183,127.0.0.1:2184";
        ExponentialBackoffRetry retryPolicy = new ExponentialBackoffRetry(1000, 3, 5000);
        CuratorFramework zkClient = CuratorFrameworkFactory.builder()
                .connectString(zkServerAddress)
                .sessionTimeoutMs(5000)
                .connectionTimeoutMs(5000)
                .retryPolicy(retryPolicy)
                .build();
        zkClient.start();
        return zkClient;
    }
}

源码分析

从获取锁acquire()方法入手

public void acquire() throws Exception {
    if ( !internalLock(-1, null) ) {
        throw new IOException("Lost connection while trying to acquire lock: " + basePath);
    }
}

看到调用了internalLock方法,进到internalLock方法中

private boolean internalLock(long time, TimeUnit unit) throws Exception
    {
        /*
           Note on concurrency: a given lockData instance
           can be only acted on by a single thread so locking isn't necessary
        */

        Thread currentThread = Thread.currentThread();
        //先判断当前线程是否持有了锁,如果是,则加锁次数count+1,返回成功
        LockData lockData = threadData.get(currentThread);
        if ( lockData != null )
        {
            // re-entering
            lockData.lockCount.incrementAndGet();
            return true;
        }
        //调用LockInternals的attemptLock()方法进行加锁
        String lockPath = internals.attemptLock(time, unit, getLockNodeBytes());
        //加锁成功,则将当前线程对应加锁数据加到map中
        if ( lockPath != null )
        {
            LockData newLockData = new LockData(currentThread, lockPath);
            threadData.put(currentThread, newLockData);
            return true;
        }

        return false;
    }

进到LockInternals的attemptLock()中,看下代码

String attemptLock(long time, TimeUnit unit, byte[] lockNodeBytes) throws Exception
    {
        //开始时间,后面用做超时判断
        final long      startMillis = System.currentTimeMillis();
        //超时时间,转换为毫秒
        final Long      millisToWait = (unit != null) ? unit.toMillis(time) : null;
        //节点数据
        final byte[]    localLockNodeBytes = (revocable.get() != null) ? new byte[0] : lockNodeBytes;
        //重试次数
        int             retryCount = 0;
        //lockPath
        String          ourPath = null;
        //是否持有锁
        boolean         hasTheLock = false;
        //是否处理完成
        boolean         isDone = false;
        //循环处理
        while ( !isDone )
        {
            isDone = true;

            try
            {
                //在path下创建一个EPHEMERAL_SEQUENTIAL(临时顺序型)类型节点
                ourPath = driver.createsTheLock(client, path, localLockNodeBytes);
                //抢锁并判断是否拥有锁
                hasTheLock = internalLockLoop(startMillis, millisToWait, ourPath);
            }
            catch ( KeeperException.NoNodeException e )
            {
                // 重试范围内时进行重试
                if ( client.getZookeeperClient().getRetryPolicy().allowRetry(retryCount++, System.currentTimeMillis() - startMillis, RetryLoop.getDefaultRetrySleeper()) )
                {
                    isDone = false;
                }
                else
                {
                    throw e;
                }
            }
        }

        if ( hasTheLock )
        {
            return ourPath;
        }

        return null;
    }

创建临时有序节点createsTheLock方法如下,比较简单

public String createsTheLock(CuratorFramework client, String path, byte[] lockNodeBytes) throws Exception
    {
        String ourPath;
        if ( lockNodeBytes != null )
        {
            ourPath = client.create().creatingParentContainersIfNeeded().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL).forPath(path, lockNodeBytes);
        }
        else
        {
            ourPath = client.create().creatingParentContainersIfNeeded().withProtection().withMode(CreateMode.EPHEMERAL_SEQUENTIAL).forPath(path);
        }
        return ourPath;
    }

判断是否拥有锁的方法internalLockLoop才是核心,下面注意了

private boolean internalLockLoop(long startMillis, Long millisToWait, String ourPath) throws Exception
    {
        boolean     haveTheLock = false;
        boolean     doDelete = false;
        try
        {
            if ( revocable.get() != null )
            {
                client.getData().usingWatcher(revocableWatcher).forPath(ourPath);
            }
            //自旋
            while ( (client.getState() == CuratorFrameworkState.STARTED) && !haveTheLock )
            {
                //获取path下对应临时有序节点,并按节点编号从小到大排序
                List<String>        children = getSortedChildren();
                //获取当前线程创建的临时节点名称
                String              sequenceNodeName = ourPath.substring(basePath.length() + 1); // +1 to include the slash
                //判断当前节点编号是否<maxLease,若是,则抢到了锁,maxLease这里为1,所以只有index为0时才抢到锁,标识只有1个线程能抢到锁
                PredicateResults    predicateResults = driver.getsTheLock(client, children, sequenceNodeName, maxLeases);
                if ( predicateResults.getsTheLock() )
                {
                    haveTheLock = true;
                }
                else
                {
                    //前一个节点编号较小的节点的路径
                    String  previousSequencePath = basePath + "/" + predicateResults.getPathToWatch();

                    synchronized(this)
                    {
                        try 
                        {
                            // use getData() instead of exists() to avoid leaving unneeded watchers which is a type of resource leak
                             //如果没抢到锁,监听前一个节点事件
                            client.getData().usingWatcher(watcher).forPath(previousSequencePath);
                            if ( millisToWait != null )
                            {
                                判断是否超时
                                millisToWait -= (System.currentTimeMillis() - startMillis);
                                startMillis = System.currentTimeMillis();
                                if ( millisToWait <= 0 )
                                {
                                    //超时 直接退出,并标记 删除节点doDelete标记=true
                                    doDelete = true;    // timed out - delete our node
                                    break;
                                }

                                wait(millisToWait);
                            }
                            else
                            {
                                //调用Object.wait(),等待线程被notify唤醒
                                wait();
                            }
                        }
                        catch ( KeeperException.NoNodeException e ) 
                        {
                            // it has been deleted (i.e. lock released). Try to acquire again
                        }
                    }
                }
            }
        }
        catch ( Exception e )
        {
            ThreadUtils.checkInterrupted(e);
            doDelete = true;
            throw e;
        }
        finally
        {
            //如果标记了删除,删除节点数据
            if ( doDelete )
            {
                deleteOurPath(ourPath);
            }
        }
        return haveTheLock;
    }

可以看到逻辑比较清晰,N个线程同时在path下创建临时顺序节点,编号最小的获取锁,没抢到锁的会调用wait()方法等待被唤醒
那么是在哪里调用了notify()方法来唤醒其他节点的呢?
答案是在监听器wacher里,该监听器会在前一个(节点编号较小)的节点被删除后触发
先分析下释放锁的方法release
看下源码

public void release() throws Exception
    {
        /*
            Note on concurrency: a given lockData instance
            can be only acted on by a single thread so locking isn't necessary
         */

        Thread currentThread = Thread.currentThread();
        LockData lockData = threadData.get(currentThread);
        if ( lockData == null )
        {
            throw new IllegalMonitorStateException("You do not own the lock: " + basePath);
        }
        //如果锁被当前线程获取了超过1次,将count-1,直接返回
        int newLockCount = lockData.lockCount.decrementAndGet();
        if ( newLockCount > 0 )
        {
            return;
        }
        if ( newLockCount < 0 )
        {
            throw new IllegalMonitorStateException("Lock count has gone negative for lock: " + basePath);
        }
        try
        {
            //释放锁
            internals.releaseLock(lockData.lockPath);
        }
        finally
        {
            threadData.remove(currentThread);
        }
    }

最终调用releaseLock方法中的deleteOurPath中

void releaseLock(String lockPath) throws Exception
    {
        revocable.set(null);
        deleteOurPath(lockPath);
    }
    
    private void deleteOurPath(String ourPath) throws Exception
    {
        try
        {
        //直接调用client删除节点
            client.delete().guaranteed().forPath(ourPath);
        }
        catch ( KeeperException.NoNodeException e )
        {
            // ignore - already deleted (possibly expired session, etc.)
        }
    }

节点被删除后,会触发抢锁过程中的wather监听器,看下监听器中内容

private final Watcher watcher = new Watcher() {
    @Override
    public void process(WatchedEvent event) {
        notifyFromWatcher();
    }
};
private synchronized void notifyFromWatcher() {
        notifyAll();
}

可以看到节点path被删除后,会通知后面一个节点进行notify操作,notify操作后,重新进入while自旋中,重新判断是否抢到了锁

最后看下getTheLock

public PredicateResults getsTheLock(CuratorFramework client, List<String> children, String sequenceNodeName, int maxLeases)
            throws Exception {
        // 之前创建的临时顺序节点在排序后的子节点列表中的索引
        int ourIndex =
                children.indexOf(sequenceNodeName);
        // 校验之前创建的临时顺序节点是否有效
        validateOurIndex(sequenceNodeName,
                ourIndex);
        // 锁公平性的核心逻辑
        // 由 InterProcessMutex 的构造函数可知, maxLeases 为 1,即只有 ourIndex 为 0 时,线程才能持有锁,或者说该线程创建的临时顺序节点激活了锁
        // Zookeeper 的临时顺序节点特性能保证跨多个 JVM 的线程并发创建节点时的顺序性,越早创建临时顺序节点成功的线程会更早地激活锁或获得锁
        boolean getsTheLock = ourIndex <
                maxLeases;
        // 如果已经获得了锁,则无需监听任何节点,否则需要监听上一顺序节点(ourIndex - 1)
        // 因 为 锁 是 公 平 的 , 因 此 无 需 监 听 除 了(ourIndex - 1)以外的所有节点,这是为了减少羊群效应, 非常巧妙的设计!!
        String pathToWatch = getsTheLock ? null :
                children.get(ourIndex - maxLeases);
        // 返回获取锁的结果,交由上层继续处理(添加监听等操作)
        return new PredicateResults(pathToWatch,
                getsTheLock);
    }

    static void validateOurIndex(String sequenceNodeName, int ourIndex) throws KeeperException {
        if (ourIndex < 0) {
            // 容错处理,可跳过
            // 由于会话过期或连接丢失等原因,该线程创建的临时顺序节点被 Zookeeper 服务端删除,往外抛出 NoNodeException
            // 如果在重试策略允许范围内,则进行重新尝试获取锁,这会重新重新生成临时顺序节点
            // 佩服 Curator 的作者将边界条件考虑得 如此周到!
            throw new KeeperException.NoNodeException("Sequential path  not found:" + sequenceNodeName);
        }
    }
上一篇下一篇

猜你喜欢

热点阅读