paper.3

2018-12-19  本文已影响0人  Mabel娜
paper.3

Identifying miRNA/mRNA negative regulation pairs in colorectal cancer

这篇是曾大大老早之前推荐的,再来一篇,快乐快乐
看起来简洁明了,直击痛点哎

背景不表,来学绝招


workflow.JPG

1. data

TCGA分别获取miRNAseq,mRNAseq数据, 共261个样本,包括253 CRC samples,8 normal tissue samples

2. screening of differential genes and miRNA

2种方法取交集,包括:
Samr package(delta=1, FC>2, FDR<5%);
limma package ( p.adj<.05, FC>2);

3. target genes of the differential miRNA

首先通过miRWalk2.0查找diff-miRNA的target mRNAs;
然后2者pearson rank correlation;
最后筛选出差异表达并负相关的基因;

4. determination of the disease-related miRNA/mRNA

终于构建好了对子,接下来就是GO/KEGG analysis;

5. construction of PPI network

首先对disease-related miRNA/mRNA进行PCA analysis;
接着对变化最大的disease-related miRNA进行生存分析;
最后把对子扔进STRING,构建PPI network;

6. network analysis

network的topology parameters and regulation networks。

这样看来,ROC,AUC,机器学习的分类算法是必须要填坑的啊

上一篇下一篇

猜你喜欢

热点阅读