理想气体小振幅波状态方程

2020-04-19  本文已影响0人  itkkanae

设理想气体压强p密度\rho熵值s满足p=p(\rho,s),在等熵变化过程中压强的初始值为p_{0}(\rho_{0},s),将p(\rho,s)p_{0}处展开成级数得:
p(\rho,s)=p_{0}(\rho_{0},s)+\frac{\partial p}{\partial\rho}|_{\rho=\rho_{0},s=s}(\rho-\rho_{0})+...+\frac{1}{n!}\frac{\partial^{n}p}{\partial\rho^{n}}|_{\rho=\rho_{0},s=s}(\rho-\rho_{0})^{n}

p(\rho,s)-p_{0}(\rho_{0},s)=\frac{\partial p}{\partial\rho}|_{\rho=\rho_{0},s=s}(\rho-\rho_{0})+...+\frac{1}{n!}\frac{\partial^{n}p}{\partial\rho^{n}}|_{\rho=\rho_{0},s=s}(\rho-\rho_{0})^{n}

\Delta p=\frac{\partial p}{\partial\rho}|_{\rho=\rho_{0},s=s}\Delta\rho+...+\frac{1}{n!}\frac{\partial^{n}p}{\partial\rho^{n}}|_{\rho=\rho_{0},s=s}\Delta\rho^{n}

由于小振幅波\Delta\rho的高次幂相对于一次幂可以忽略不记,得状态方程:
\Delta p=\frac{\partial p}{\partial\rho}|_{\rho=\rho_{0},s=s}\Delta\rho

\Delta p=c_{0}^{2}\Delta\rho

(以下部分解释暂无找到确切依据)
等温波速
根据理想气体状态方程pV=\frac{mRT_{K}}{M},如果在等温变化下,能量快速传递不转化为内能,温度T_{K}保持不变,可推出等温变化波速:
\sqrt{\frac{\partial p}{\partial\rho}}=\sqrt{\frac{\Delta p}{\Delta\rho}}=\sqrt{\frac{\Delta pV}{\Delta m}}=\sqrt{\frac{\frac{\Delta mRT_{K}}{M}}{\Delta m}}=\sqrt{\frac{RT_{K}}{M}}=c_{T}

等熵波速
在等熵绝热的情况下,能量传递无法快速消散并转化为内能,系统对外做功dA为:
dA=-\frac{m}{M}C_{V}dT=pdV

对理想气体状态方程两边微分得:
pdV+Vdp=\frac{m}{M}RdT

合并上两式消去dT得:
(C_{V}+R)pdV=-C_{V}Vdp

代入绝热指数\gamma=\frac{C_{p}}{C_{V}}=\frac{C_{V}+R}{C_{V}}得:
\gamma\frac{dV}{V}=-\frac{dp}{p}

将两边积分得到等熵变化中其乘积为恒定常数:
pV^{\gamma}=C

现有一定质量气体从p_{0}V_{0}变为pV,则满足下列式子:
pV^{\gamma}=p_{0}V_{0}^{\gamma}

p=p_{0}(\frac{V_{0}}{V})^{\gamma}=p_{0}(\frac{\rho}{\rho_{0}})^{\gamma}

将上式代入\sqrt{\frac{\partial p}{\partial\rho}}|_{\rho=\rho_{0}}中得等熵波速:
c_{s}=\sqrt{\frac{\partial p}{\partial\rho}}|_{\rho=\rho_{0}}=\sqrt{p_{0}\frac{\gamma\rho^{\gamma-1}}{\rho_{0}^{\gamma}}}|_{\rho=\rho_{0}}=\sqrt{\gamma \frac{p}{\rho}}=\sqrt{\frac{\gamma RT_{K}}{M}}

上一篇 下一篇

猜你喜欢

热点阅读