单细胞测序CNS文章图表复现

CNS图表复现20—第三次分群,以T细胞为例

2021-03-07  本文已影响0人  Seurat_Satija

本文是参考学习CNS图表复现20—第三次分群,以T细胞为例的学习笔记。可能根据学习情况有所改动。
前面我们展现了 CNS图表复现08—肿瘤单细胞数据第一次分群通用规则,然后呢,第二次分群的上皮细胞可以细分恶性与否,免疫细胞呢,细分可以成为: B细胞,T细胞,巨噬细胞,树突细胞等等。实际上每个免疫细胞亚群仍然可以继续精细的划分,以文章为例:

这就是正文的图表5:

首先是Macrophages细分 :

各个细胞亚群的比例展示及标记基因小提琴图:

图片

各个细胞亚群的分布情况及标记基因热图;

图片

然后是T cells and NK cells的细分

各个细胞亚群的比例展示及标记基因小提琴图:

图片

各个细胞亚群的分布情况及标记基因热图;

图片

尝试复现T细胞的亚群细分

文章提到的是

首先我们拿到T cells and NK cells数据集

rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
### 来源于:CNS图表复现02—Seurat标准流程之聚类分群的step1-create-sce.R
load(file = 'first_sce.Rdata')

### 来源于 step2-anno-first.R 
load(file = 'phe-of-first-anno.Rdata')

sce=sce.first
table(phe$immune_annotation)
# #  immune (CD45+,PTPRC), epithelial/cancer (EpCAM+,EPCAM), and stromal (CD10+,MME,fibo or CD31+,PECAM1,endo) 

genes_to_check = c("PTPRC","CD19",'PECAM1','MME','CD3G', 'CD4', 'CD8A' )
p <- DotPlot(sce, features = genes_to_check,
             assay='RNA' )  
p
table(phe$immune_annotation,phe$seurat_clusters) 

cells.use <- row.names(sce@meta.data)[which(phe$immune_annotation=='immune')]
length(cells.use)
sce <-subset(sce, cells=cells.use)  
sce

# 实际上这里需要重新对sce进行降维聚类分群,为了节省时间
# 我们直接载入前面的降维聚类分群结果,但是并没有载入tSNE哦
## 来源于:CNS图表复现05—免疫细胞亚群再分类 
load(file = 'phe-of-subtypes-Immune-by-manual.Rdata')
sce@meta.data=phe
table(phe$immuSub) 

# 需要背景知识
# https://www.abcam.com/primary-antibodies/immune-cell-markers-poster
# NK Cell* CD11b+, CD122+, NK1.1+, NKG2D+, NKp46+
# NCR1 Gene. Natural Cytotoxicity Triggering Receptor 1; NK-P46; Natural Killer Cell P46-Related Protein; 
# NKG2D is a transmembrane protein belonging to the NKG2 family of C-type lectin-like receptors. NKG2D is encoded by KLRK1 gene

# T Cell* CD3+ 
genes_to_check = c('CD3G', 'CD4', 'CD8A', 'FOXP3',
                   'TNF','IFNG','KLRK1','NCR1')
p <- DotPlot(sce, features = genes_to_check,group.by = 'seurat_clusters') + coord_flip()
p 

cells.use <- row.names(sce@meta.data)[which(phe$immuSub=='Tcells')]
length(cells.use)
sce <-subset(sce, cells=cells.use)  
sce
# 26485 features across 4555 samples within 1 assay 

然后走降维聚类分群流程
挑选出来了 4555 个细胞,走标准流程即可:

sce <- NormalizeData(sce, normalization.method =  "LogNormalize", 
                     scale.factor = 10000)
GetAssay(sce,assay = "RNA")
sce <- FindVariableFeatures(sce, 
                            selection.method = "vst", nfeatures = 2000) 
# 步骤 ScaleData 的耗时取决于电脑系统配置(保守估计大于一分钟)
sce <- ScaleData(sce) 
sce <- RunPCA(object = sce, pc.genes = VariableFeatures(sce)) 
DimHeatmap(sce, dims = 1:12, cells = 100, balanced = TRUE)
ElbowPlot(sce)
sce <- FindNeighbors(sce, dims = 1:15)
sce <- FindClusters(sce, resolution = 0.2)
table(sce@meta.data$RNA_snn_res.0.2)  
sce <- RunUMAP(object = sce, dims = 1:15, do.fast = TRUE)
DimPlot(sce,reduction = "umap",label=T)
# 这个时候分成了6群

查亚群的标记基因

如果我们去 https://www.abcam.com/primary-antibodies/t-cells-basic-immunophenotyping 可以看到

比较简单的CD4,CD8,以及FOXP3各自代表的T细胞亚群。比较复杂的可以是:张泽民团队的单细胞研究把T细胞分的如此清楚

但是很不幸,在这个数据集里面它们都不是主要的细胞亚群决定因素。

genes_to_check = c('CD3G', 'CD4', 'CD8A', 'FOXP3',
                   'TNF','IFNG','KLRK1','NCR1')
p1 <- DotPlot(sce, features = genes_to_check,group.by = 'seurat_clusters') + coord_flip()
p1
p2=DimPlot(sce,reduction = "umap",label=T)
library(patchwork)
p1+p2

出图如下:

图片

文章呢,选取的其实是 biopsy_site == "Lung" 的T cells and NK cells (n = 2,226) ,区分成为5 distinct T/NK cell pop- ulations .

> table(sce@meta.data$biopsy_site)

Adrenal   Brain   Liver      LN    lung    Lung  Pleura 
    226       2     586     700     485    1692     864 

所以我们只能是继续挑选子集走流程。代码如下:

sce <- NormalizeData(sce, normalization.method =  "LogNormalize", 
                     scale.factor = 10000)
GetAssay(sce,assay = "RNA")
sce <- FindVariableFeatures(sce, 
                            selection.method = "vst", nfeatures = 2000) 
# 步骤 ScaleData 的耗时取决于电脑系统配置(保守估计大于一分钟)
sce <- ScaleData(sce) 
sce <- RunPCA(object = sce, pc.genes = VariableFeatures(sce)) 
DimHeatmap(sce, dims = 1:12, cells = 100, balanced = TRUE)
ElbowPlot(sce)
sce <- FindNeighbors(sce, dims = 1:15)
sce <- FindClusters(sce, resolution = 0.5)
table(sce@meta.data$RNA_snn_res.0.5)  
sce <- RunUMAP(object = sce, dims = 1:15, do.fast = TRUE)
genes_to_check = c('CD3G', 'CD4', 'CD8A', 'FOXP3',
                   'TNF','IFNG','KLRK1','NCR1')
p1 <- DotPlot(sce, features = genes_to_check,group.by = 'seurat_clusters') + coord_flip()
p1
p2=DimPlot(sce,reduction = "umap",label=T)
library(patchwork)
p1+p2

可以看到,并没有本质上的区别:

图片

复现失败了!唯一看起来比较类似的就是 FOXP3 positive Tregs in cluster 5,哈哈哈哈!

上一篇下一篇

猜你喜欢

热点阅读