MR的词频统计

2019-11-07  本文已影响0人  喵星人ZC

1、准备文件

[hadoop@hadoop000 ~]$ hdfs dfs -text /data/wordcount.txt
spark   hadoop  hadoop
hive    hbase   hbase
hive    hadoop  hadoop
hive    hadoop  hadoop

2、MR的词频统计代码
pom文件

服务器是hadoop-2.6.0-cdh5.7.0版本 此处写2.6.5并不影响编写代码 一般是打瘦包到服务器运行

<hadoop.version>2.6.5</hadoop.version>

<!--添加hadoop依赖-->
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-common</artifactId>
      <version>${hadoop.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-client</artifactId>
      <version>${hadoop.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-hdfs</artifactId>
      <version>${hadoop.version}</version>
    </dependency>

代码

package com.hadoop_train.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCountApp {

    //Map
    public static class MyMapper extends Mapper<LongWritable,Text,Text,LongWritable>{

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String lines = value.toString();
            String[] splited = lines.split("\t");

            for (String word : splited) {
                //context.write((KEYOUT) key, (VALUEOUT) value)
                context.write(new Text(word), new LongWritable(1));
            }
        }
    }


    public static class MyReduce extends Reducer<Text, LongWritable, Text, LongWritable>{

        @Override
        protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
            long count = 0L;
            for (LongWritable v2 : values) {
                count += v2.get();
            }

            LongWritable v3 = new LongWritable(count);
            context.write(key, v3);
        }
    }

    public static void main(String[] args) throws Exception {

        if (args.length != 2) {
            System.err.println("please input 2 params: input output");
            System.exit(0);
        }

        Configuration conf = new Configuration();


        //执行Job前 判断输出目录是否存在 存在就删除 避免数据重复
        FileSystem fileSystem = FileSystem.get(conf);
        Path outputPath = new Path(args[1]);
        if (fileSystem.exists(outputPath)) {
            fileSystem.delete(outputPath, true);
        }


        //设置作业
        Job job = Job.getInstance(conf, WordCountApp.class.getSimpleName());
        //打成jar执行
        job.setJarByClass(WordCountApp.class);

        //获取数据
        FileInputFormat.setInputPaths(job, args[0]);
        //使用哪个mapper处理输入的数据
        job.setMapperClass(MyMapper.class);
        //map输出的数据类型是什么
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);

        //使用哪个reducer处理输入的数据
        job.setReducerClass(MyReduce.class);
        //reduce输出的数据类型是什么
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);


        //处理结果输出路径
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        //交给yarn去执行,直到执行结束才退出本程序
        job.waitForCompletion(true);

    }

}

map函数的说明

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> 

protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)

 /**
     * KEYIN    即K1     表示每一行的起始位置(偏移量offset)
     * VALUEIN  即v1     表示每一行的文本内容
     * KEYOUT   即k2     表示每一行中的每个单词
     * VALUEOUT 即v2     表示每一行中的每个单词的出现次数,固定值1
**/

前两个参数Key和value比较好理解,就是输入的key和value。第三个是Context是来记录和存储输入的key和value,来传递给下游reduce

reduce函数的说明

public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT>

rotected void reduce(Text key, Iterable<LongWritable> values, Reducer<Text, LongWritable, Text, LongWritable>.Context context)

/**
     * KEYIN    即k2     表示每一行中的每个单词
     * VALUEIN  即v2     表示每一行中每个单词出现次数,固定值1
     * KEYOUT   即k3     表示整个文件中的不同单词
     * VALUEOUT 即v3     表示整个文件中的不同单词的出现总次数
 **/

reduce函数的输入也是一个key/value的形式,不过它的value是一个迭代器的形式Iterable<IntWritable> values,也就是说reduce的输入是一个key对应一组的值的value,reduce也有context和map的context作用一致。

3、打包运行测试
将程序进行打包上传至服务器后运行

hadoop jar hadoop-1.0.jar  com.hadoop_train.wordcount.WordCountApp /data/* /out  

查看结果

[hadoop@hadoop000 ~]$ hadoop fs -text /out/*
hadoop  6
hbase   2
hive    3
spark   1

4、MR的整个流程可以总结为以下阶段

image.png
上一篇 下一篇

猜你喜欢

热点阅读