声场波动方程

2020-04-21  本文已影响0人  itkkanae

联立连续性方程、状态方程、运动方程:
\left\{\begin{aligned}\frac{ \partial\Delta\rho}{\partial t}&=-\rho_{0}\bigtriangledown\overset{\rightarrow}{\mu}&(1)\\ \Delta p&=c_{0}^{2}\Delta\rho&(2)\\ \rho_{0}\frac{\partial\overset{\rightarrow}{\mu}}{\partial t}&=-\bigtriangledown\Delta p&(3) \end{aligned}\right.

将(1)式两端对时间求一阶偏导,(2)式两端对时间求二阶偏导,(3)式两端求散度,得:
\left\{\begin{aligned}\frac{ \partial^{2}\Delta\rho}{\partial t^{2}}&=-\rho_{0}\frac{\partial\bigtriangledown\overset{\rightarrow}{\mu}}{\partial t}&(4)\\ \frac{ \partial^{2}\Delta p}{\partial t^{2}}&=c_{0}^{2}\frac{ \partial^{2}\Delta\rho}{\partial t^{2}}&(5)\\ \rho_{0}\frac{\partial\bigtriangledown\overset{\rightarrow}{\mu}}{\partial t}&=-\bigtriangledown^{2}\Delta p&(6) \end{aligned}\right.

将(5)式带入(4)式左边约去密度逾量,(6)式带入(4)式右边约去质点振速得到声压波动方程
\frac{ \partial^{2}\Delta p}{\partial t^{2}}=c_{0}^{2}\bigtriangledown^{2}\Delta p

将(1)式两端求散度,(2)式两端对时间求一阶偏导然后求梯度,(3)式两端对时间求一阶偏导,得:
\left\{\begin{aligned}\bigtriangledown\frac{ \partial\Delta\rho}{\partial t}&=-\rho_{0}\bigtriangledown^{2}\overset{\rightarrow}{\mu}&(7)\\ \bigtriangledown\frac{\partial\Delta p}{\partial t}&=c_{0}^{2}\bigtriangledown\frac{ \partial\Delta\rho}{\partial t}&(8)\\ \rho_{0}\frac{\partial^{2}\overset{\rightarrow}{\mu}}{\partial t^{2}}&=-\bigtriangledown\frac{\partial\Delta p}{\partial t}&(9) \end{aligned}\right.

将(7)式带入(8)式左边约去密度逾量,(9)式带入(8)式右边约去声压得到质点振速波动方程
\frac{ \partial^{2}\overset{\rightarrow}{\mu}}{\partial t^{2}}=c_{0}^{2}\bigtriangledown^{2}\overset{\rightarrow}{\mu}

如果设定运动势函数满足grad\varphi=\overset{\rightarrow}{\mu},则运动势函数波动方程为:
\frac{ \partial^{2}\varphi}{\partial t^{2}}=c_{0}^{2}\bigtriangledown^{2}\varphi

另外相似方法可求得密度逾量波动方程为:
\frac{ \partial^{2}\rho}{\partial t^{2}}=c_{0}^{2}\bigtriangledown^{2}\rho

上一篇下一篇

猜你喜欢

热点阅读