通过TF Keras实现双塔模型
2021-11-23 本文已影响0人
郭彦超
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
tf.__version__
'2.4.1'
1、数据预处理
df = pd.read_csv("my_test.csv")
df.f_act.value_counts()
0 2112700
1 17616
Name: f_act, dtype: int64
df0 = df[df['f_act']==0].sample(frac=0.01)
df1 = df[df['f_act']==1]
df_sample = df1.append(df0)
df_sample.f_act.value_counts()
0 21127
1 17616
Name: f_act, dtype: int64
def add_index_column(param_df, column_name):
values = list(param_df[column_name].unique())
value_index_dict = {value:idx for idx,value in enumerate(values)}
param_df[f"{column_name}_idx"] = param_df[column_name].map(value_index_dict)
add_index_column(df_sample, "product_total_pv_3d")
add_index_column(df_sample, "product_valid_work_users")
add_index_column(df_sample, "product_total_pv_7d")
add_index_column(df_sample, "f_user_grade_type")
add_index_column(df_sample, "product_price")
add_index_column(df_sample, "f_user_identity")
add_index_column(df_sample, "f_user_last_active_time")
add_index_column(df_sample, "user_product_common_valid_count")
add_index_column(df_sample, "user_score")
add_index_column(df_sample, "f_user_recharge_xd_90")
add_index_column(df_sample, "user_login_days_7")
add_index_column(df_sample, "user_id")
add_index_column(df_sample, "product_id")
num_product_total_pv_3d = df_sample["product_total_pv_3d_idx"].max() + 1
num_product_valid_work_users = df_sample["product_valid_work_users_idx"].max() + 1
num_product_total_pv_7d = df_sample["product_total_pv_7d_idx"].max() + 1
num_f_user_grade_type = df_sample["f_user_grade_type_idx"].max() + 1
num_product_price = df_sample["product_price_idx"].max() + 1
num_f_user_identity = df_sample["f_user_identity_idx"].max() + 1
num_f_user_last_active_time = df_sample["f_user_last_active_time_idx"].max() + 1
num_user_product_common_valid_count = df_sample["user_product_common_valid_count_idx"].max() + 1
num_user_score = df_sample["user_score_idx"].max() + 1
num_f_user_recharge_xd_90 = df_sample["f_user_recharge_xd_90_idx"].max() + 1
num_user_login_days_7 = df_sample["user_login_days_7_idx"].max() + 1
num_user_id = df_sample["user_id_idx"].max() + 1
num_product_id = df_sample["product_id_idx"].max() + 1
#df_sample = df.sample(frac=0.1)
y = df_sample.pop("f_act")
X = df_sample[["product_total_pv_3d_idx","product_valid_work_users_idx","product_total_pv_7d_idx","f_user_grade_type_idx","product_price_idx","f_user_identity_idx","f_user_last_active_time_idx","user_product_common_valid_count_idx","user_score_idx","f_user_recharge_xd_90_idx","user_login_days_7_idx","user_id_idx","product_id_idx" ]]
X.columns
Index(['product_total_pv_3d_idx', 'product_valid_work_users_idx',
'product_total_pv_7d_idx', 'f_user_grade_type_idx', 'product_price_idx',
'f_user_identity_idx', 'f_user_last_active_time_idx',
'user_product_common_valid_count_idx', 'user_score_idx',
'f_user_recharge_xd_90_idx', 'user_login_days_7_idx', 'user_id_idx',
'product_id_idx'],
dtype='object')
2、构建双塔模型
def get_model():
"""函数式API搭建双塔DNN模型"""
# 输入
user_id = keras.layers.Input(shape=(1,), name="user_id")
user_login_days_7 = keras.layers.Input(shape=(1,), name="user_login_days_7")
f_user_recharge_xd_90 = keras.layers.Input(shape=(1,), name="f_user_recharge_xd_90")
user_score = keras.layers.Input(shape=(1,), name="user_score")
user_product_common_valid_count = keras.layers.Input(shape=(1,), name="user_product_common_valid_count")
f_user_last_active_time = keras.layers.Input(shape=(1,), name="f_user_last_active_time")
f_user_identity = keras.layers.Input(shape=(1,), name="f_user_identity")
f_user_grade_type = keras.layers.Input(shape=(1,), name="f_user_grade_type")
product_price = keras.layers.Input(shape=(1,), name="product_price")
product_id = keras.layers.Input(shape=(1,), name="product_id")
product_total_pv_3d = keras.layers.Input(shape=(1,), name="product_total_pv_3d")
product_total_pv_7d = keras.layers.Input(shape=(1,), name="product_total_pv_7d")
product_valid_work_users = keras.layers.Input(shape=(1,), name="product_valid_work_users")
# user 塔, embedding部分可以考虑使用word2vec进行优化 https://stackoverflow.com/questions/58311682/how-to-concatenate-embeddings-with-variable-length-inputs-in-keras
user_vector = tf.keras.layers.concatenate([
layers.Embedding(num_user_id, 10000)(user_id),
layers.Embedding(num_user_login_days_7, 2)(user_login_days_7),
layers.Embedding(num_f_user_recharge_xd_90, 5)(f_user_recharge_xd_90),
layers.Embedding(num_user_score, 10)(user_score),
layers.Embedding(num_user_product_common_valid_count, 20)(user_product_common_valid_count),
layers.Embedding(num_f_user_last_active_time, 20)(f_user_last_active_time),
layers.Embedding(num_f_user_identity, 10)(f_user_identity),
layers.Embedding(num_f_user_grade_type, 5)(f_user_grade_type)
])
user_vector = layers.Dense(2048, activation='relu')(user_vector)
user_vector = layers.Dense(512, activation='relu')(user_vector)
user_vector = layers.Dense(128, activation='relu',
name="user_embedding", kernel_regularizer='l2')(user_vector)
# movie塔
product_vector = tf.keras.layers.concatenate([
layers.Embedding(num_product_id, 2000)(product_id),
layers.Embedding(num_product_price, 10)(product_price),
layers.Embedding(num_product_total_pv_3d, 20)(product_total_pv_3d),
layers.Embedding(num_product_valid_work_users, 20)(product_valid_work_users),
layers.Embedding(num_product_total_pv_7d, 20)(product_total_pv_7d)
])
product_vector = layers.Dense(2048, activation='relu')(product_vector)
product_vector = layers.Dense(512, activation='relu')(product_vector)
product_vector = layers.Dense(128, activation='relu',
name="product_embedding", kernel_regularizer='l2')(product_vector)
# 每个用户的embedding和item的embedding作点积
dot_user_product = tf.reduce_sum(user_vector*product_vector, axis = 1)
dot_user_product = tf.expand_dims(dot_user_product, 1)
output = layers.Dense(1, activation='sigmoid')(dot_user_product)
return keras.models.Model(inputs=[user_id, user_login_days_7, f_user_recharge_xd_90, user_score, user_product_common_valid_count, f_user_last_active_time, f_user_identity, f_user_grade_type, product_id, product_price, product_total_pv_3d, product_valid_work_users, product_total_pv_7d], outputs=[output])
3、模型训练
model = get_model()
print(model.input)
# model.compile(loss=tf.keras.losses.MeanSquaredError(),
# optimizer=keras.optimizers.RMSprop())
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
fit_x_train = [
X["user_id_idx"],
X["user_login_days_7_idx"],
X["f_user_recharge_xd_90_idx"],
X["user_score_idx"],
X["user_product_common_valid_count_idx"],
X["f_user_last_active_time_idx"],
X["f_user_identity_idx"],
X["f_user_grade_type_idx"],
X["product_id_idx"],
X["product_price_idx"],
X["product_total_pv_3d_idx"],
X["product_valid_work_users_idx"],
X["product_total_pv_7d_idx"]
]
from datetime import datetime
TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S/}".format(datetime.now())
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs/logs_"+TIMESTAMP)
history = model.fit(
x=fit_x_train,
y=y,
batch_size=32,
epochs=5,
verbose=1,
callbacks=[tensorboard_callback]
)
history
[<KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'user_id')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'user_login_days_7')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'f_user_recharge_xd_90')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'user_score')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'user_product_common_valid_count')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'f_user_last_active_time')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'f_user_identity')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'f_user_grade_type')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'product_id')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'product_price')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'product_total_pv_3d')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'product_valid_work_users')>, <KerasTensor: shape=(None, 1) dtype=float32 (created by layer 'product_total_pv_7d')>]
Epoch 1/5
909/909 [==============================] - 604s 663ms/step - loss: 1.1246 - accuracy: 0.6392
Epoch 2/5
909/909 [==============================] - 613s 674ms/step - loss: 0.3892 - accuracy: 0.8272
Epoch 3/5
909/909 [==============================] - 610s 671ms/step - loss: 0.2689 - accuracy: 0.8650
Epoch 4/5
909/909 [==============================] - 608s 669ms/step - loss: 0.2350 - accuracy: 0.8742
Epoch 5/5
909/909 [==============================] - 612s 673ms/step - loss: 0.2082 - accuracy: 0.8870
# 打印模型结构
model.summary()
Model: "model_11"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
user_id (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
user_login_days_7 (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
f_user_recharge_xd_90 (InputLay [(None, 1)] 0
__________________________________________________________________________________________________
user_score (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
user_product_common_valid_count [(None, 1)] 0
__________________________________________________________________________________________________
f_user_last_active_time (InputL [(None, 1)] 0
__________________________________________________________________________________________________
f_user_identity (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
f_user_grade_type (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
product_id (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
product_price (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
product_total_pv_3d (InputLayer [(None, 1)] 0
__________________________________________________________________________________________________
product_valid_work_users (Input [(None, 1)] 0
__________________________________________________________________________________________________
product_total_pv_7d (InputLayer [(None, 1)] 0
__________________________________________________________________________________________________
embedding_52 (Embedding) (None, 1, 10000) 38450000 user_id[0][0]
__________________________________________________________________________________________________
embedding_53 (Embedding) (None, 1, 2) 18 user_login_days_7[0][0]
__________________________________________________________________________________________________
embedding_54 (Embedding) (None, 1, 5) 35 f_user_recharge_xd_90[0][0]
__________________________________________________________________________________________________
embedding_55 (Embedding) (None, 1, 10) 3030 user_score[0][0]
__________________________________________________________________________________________________
embedding_56 (Embedding) (None, 1, 20) 8440 user_product_common_valid_count[0
__________________________________________________________________________________________________
embedding_57 (Embedding) (None, 1, 20) 400 f_user_last_active_time[0][0]
__________________________________________________________________________________________________
embedding_58 (Embedding) (None, 1, 10) 40 f_user_identity[0][0]
__________________________________________________________________________________________________
embedding_59 (Embedding) (None, 1, 5) 25 f_user_grade_type[0][0]
__________________________________________________________________________________________________
embedding_60 (Embedding) (None, 1, 2000) 29008000 product_id[0][0]
__________________________________________________________________________________________________
embedding_61 (Embedding) (None, 1, 10) 90 product_price[0][0]
__________________________________________________________________________________________________
embedding_62 (Embedding) (None, 1, 20) 3400 product_total_pv_3d[0][0]
__________________________________________________________________________________________________
embedding_63 (Embedding) (None, 1, 20) 17460 product_valid_work_users[0][0]
__________________________________________________________________________________________________
embedding_64 (Embedding) (None, 1, 20) 6180 product_total_pv_7d[0][0]
__________________________________________________________________________________________________
concatenate_8 (Concatenate) (None, 1, 10072) 0 embedding_52[0][0]
embedding_53[0][0]
embedding_54[0][0]
embedding_55[0][0]
embedding_56[0][0]
embedding_57[0][0]
embedding_58[0][0]
embedding_59[0][0]
__________________________________________________________________________________________________
concatenate_9 (Concatenate) (None, 1, 2070) 0 embedding_60[0][0]
embedding_61[0][0]
embedding_62[0][0]
embedding_63[0][0]
embedding_64[0][0]
__________________________________________________________________________________________________
dense_18 (Dense) (None, 1, 2048) 20629504 concatenate_8[0][0]
__________________________________________________________________________________________________
dense_20 (Dense) (None, 1, 2048) 4241408 concatenate_9[0][0]
__________________________________________________________________________________________________
dense_19 (Dense) (None, 1, 512) 1049088 dense_18[0][0]
__________________________________________________________________________________________________
dense_21 (Dense) (None, 1, 512) 1049088 dense_20[0][0]
__________________________________________________________________________________________________
user_embedding (Dense) (None, 1, 128) 65664 dense_19[0][0]
__________________________________________________________________________________________________
product_embedding (Dense) (None, 1, 128) 65664 dense_21[0][0]
__________________________________________________________________________________________________
tf.math.multiply_4 (TFOpLambda) (None, 1, 128) 0 user_embedding[0][0]
product_embedding[0][0]
__________________________________________________________________________________________________
tf.math.reduce_sum_4 (TFOpLambd (None, 128) 0 tf.math.multiply_4[0][0]
__________________________________________________________________________________________________
tf.expand_dims_4 (TFOpLambda) (None, 1, 128) 0 tf.math.reduce_sum_4[0][0]
__________________________________________________________________________________________________
dense_22 (Dense) (None, 1, 1) 129 tf.expand_dims_4[0][0]
==================================================================================================
Total params: 94,597,663
Trainable params: 94,597,663
Non-trainable params: 0
__________________________________________________________________________________________________
4、模型预估
inputs = df_sample.sample(frac=0.01)[
["user_id_idx","user_login_days_7_idx","f_user_recharge_xd_90_idx","user_score_idx","user_product_common_valid_count_idx", "f_user_last_active_time_idx", "f_user_identity_idx", "f_user_grade_type_idx", "product_id_idx", "product_price_idx", "product_total_pv_3d_idx", "product_valid_work_users_idx", "product_total_pv_7d_idx"]].head(10)
model.predict([
inputs["user_id_idx"],
inputs["user_login_days_7_idx"],
inputs["f_user_recharge_xd_90_idx"],
inputs["user_score_idx"],
inputs["user_product_common_valid_count_idx"],
inputs["f_user_last_active_time_idx"],
inputs["f_user_identity_idx"],
inputs["f_user_grade_type_idx"],
inputs["product_id_idx"],
inputs["product_price_idx"],
inputs["product_total_pv_3d_idx"],
inputs["product_valid_work_users_idx"],
inputs["product_total_pv_7d_idx"]
])
array([[[0.09251767]],
[[0.00407892]],
[[0.07737359]],
[[0.67664975]],
[[0.6161837 ]],
[[0.5397055 ]],
[[0.43793055]],
[[0.18323252]],
[[0.06416044]],
[[0.5696974 ]]], dtype=float32)
inputs = df_sample.sample(frac=0.01)[
["f_act","user_id_idx","user_login_days_7_idx","f_user_recharge_xd_90_idx","user_score_idx","user_product_common_valid_count_idx", "f_user_last_active_time_idx", "f_user_identity_idx", "f_user_grade_type_idx", "product_id_idx", "product_price_idx", "product_total_pv_3d_idx", "product_valid_work_users_idx", "product_total_pv_7d_idx"]].head(10)
score = model.evaluate([
inputs["user_id_idx"],
inputs["user_login_days_7_idx"],
inputs["f_user_recharge_xd_90_idx"],
inputs["user_score_idx"],
inputs["user_product_common_valid_count_idx"],
inputs["f_user_last_active_time_idx"],
inputs["f_user_identity_idx"],
inputs["f_user_grade_type_idx"],
inputs["product_id_idx"],
inputs["product_price_idx"],
inputs["product_total_pv_3d_idx"],
inputs["product_valid_work_users_idx"],
inputs["product_total_pv_7d_idx"]
], inputs["f_act"] )
score
5、导出User塔和Item塔
user_layer_model = keras.models.Model(
inputs=[model.input[0], model.input[1], model.input[2], model.input[3], model.input[4], model.input[5], model.input[6], model.input[7]],
outputs=model.get_layer("user_embedding").output
)
user_embeddings = []
#简单处理,这里没有对用户和商品进行去重
for index, row in df_sample.sample(frac=0.01).iterrows():
user_id = row["user_id"]
user_input = [
np.reshape(row["user_id_idx"], [1,1]),
np.reshape(row["user_login_days_7_idx"], [1,1]),
np.reshape(row["f_user_recharge_xd_90_idx"], [1,1]),
np.reshape(row["user_score_idx"], [1,1]),
np.reshape(row["user_product_common_valid_count_idx"], [1,1]),
np.reshape(row["f_user_last_active_time_idx"], [1,1]),
np.reshape(row["f_user_identity_idx"], [1,1]),
np.reshape(row["f_user_grade_type_idx"], [1,1])
]
user_embedding = user_layer_model(user_input)
embedding_str = ",".join([str(x) for x in user_embedding.numpy().flatten()])
user_embeddings.append([user_id, embedding_str])
df_user_embedding = pd.DataFrame(user_embeddings, columns = ["user_id", "user_embedding"])
df_user_embedding.head()