均匀静止理想流体小振幅波运动方程

2020-04-20  本文已影响0人  itkkanae

还是熟悉的图,假设各时空压强满足p=p(x,y,z,t)

根据压强分析上图所示微元受力情况,首先分析x方向上AB面所受压力:
\overset{\rightarrow}{F_{A}}=dydz(p-\frac{\partial p}{\partial x}\frac{1}{2}dx)\overset{\rightarrow}{i}

\overset{\rightarrow}{F_{B}}=-dydz(p+\frac{\partial p}{\partial x}\frac{1}{2}dx)\overset{\rightarrow}{i}

得到x方向上所受到的力:
\overset{\rightarrow}{F_{x}}=-dxdydz\frac{\partial p}{\partial x}\overset{\rightarrow}{i}=-dV\frac{\partial p}{\partial x}\overset{\rightarrow}{i}

个方向上受到的合力:
\overset{\rightarrow}{F}=-dV(\frac{\partial p}{\partial x}\overset{\rightarrow}{i}+\frac{\partial p}{\partial y}\overset{\rightarrow}{i}+\frac{\partial p}{\partial z}\overset{\rightarrow}{i})=-dVgradp=-dV\bigtriangledown p

代入牛二定律得:
m\overset{\rightarrow}{a}=-dV\bigtriangledown p

\rho\frac{d\overset{\rightarrow}{u}}{dt}=-\bigtriangledown p

根据均匀静止理想流体小振幅波的条件p_{0}\rho_{0}为常数,u_{0}为0:
p=p_{0}+\Delta p

u=u_{0}+\mu

\rho=\rho_{0}+\Delta\rho

代入条件得:
(\rho_{0}+\Delta\rho)\frac{d\overset{\rightarrow}{\mu}}{dt}=-\bigtriangledown\Delta p

(\rho_{0}+\Delta\rho)(\frac{\partial\overset{\rightarrow}{\mu}}{\partial t}+\frac{\partial\overset{\rightarrow}{\mu}}{\partial x}\frac{dx}{dt}+\frac{\partial\overset{\rightarrow}{\mu}}{\partial y}\frac{dy}{dt}+\frac{\partial\overset{\rightarrow}{\mu}}{\partial z}\frac{dz}{dt})=-\bigtriangledown\Delta p

由小振幅波的条件可知,\Delta\rho\frac{\partial\overset{\rightarrow}{\mu}}{\partial t}\frac{\partial\overset{\rightarrow}{\mu}}{\partial x}\frac{dx}{dt}等均为一阶小量,方程最后化为:
\rho_{0}\frac{\partial\overset{\rightarrow}{\mu}}{\partial t}+...=-\bigtriangledown\Delta p

其中省略部分包含二阶和三阶小量,相较于一阶小量\rho_{0}\frac{\partial\overset{\rightarrow}{\mu}}{\partial t}可以忽略不计,因此运动方程化为:
\rho_{0}\frac{\partial\overset{\rightarrow}{\mu}}{\partial t}=-\bigtriangledown\Delta p

另外,对方程两端时间积分得欧拉方程(流体力学):

\overset{\rightarrow}{\mu}=-\frac{1}{\rho_{0}}\int\bigtriangledown\Delta pdt

上一篇下一篇

猜你喜欢

热点阅读