xxl_job的分布式锁的实现
提到分布式锁的实现,一瞬间想到的就是三种实现方案:数据库的innodb的行锁、redis的setnx和zookeep的zab协议。
一、 基于数据库实现分布式锁
- 悲观锁
利用select … where … for update 排他锁
注意: 其他附加功能与实现一基本一致,这里需要注意的是“where name=lock ”,name字段必须要走索引,否则会锁表。有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题。
- 乐观锁
所谓乐观锁与前边最大区别在于基于CAS思想,是不具有互斥性,不会产生锁等待而消耗资源,操作过程中认为不存在并发冲突,只有update version失败后才能觉察到。我们的抢购、秒杀就是用了这种实现以防止超卖。
通过增加递增的版本号字段实现乐观锁
二、 基于缓存(Redis等)实现分布式锁
- 使用命令介绍:
(1)SETNX
SETNX key val:当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。
(2)expire
expire key timeout:为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。
(3)delete
delete key:删除key
在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。
- 实现思想:
(1)获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
(2)获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
(3)释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。
代码:
* 分布式锁的简单实现代码 */
public class DistributedLock {
private final JedisPool jedisPool;
public DistributedLock(JedisPool jedisPool) {
this.jedisPool = jedisPool;
}
/**
* 加锁
* @param lockName 锁的key
* @param acquireTimeout 获取超时时间
* @param timeout 锁的超时时间
* @return 锁标识
*/
public String lockWithTimeout(String lockName, long acquireTimeout, long timeout) {
Jedis conn = null;
String retIdentifier = null;
try {
// 获取连接
conn = jedisPool.getResource();
// 随机生成一个value
String identifier = UUID.randomUUID().toString();
// 锁名,即key值
String lockKey = "lock:" + lockName;
// 超时时间,上锁后超过此时间则自动释放锁
int lockExpire = (int) (timeout / );
// 获取锁的超时时间,超过这个时间则放弃获取锁
long end = System.currentTimeMillis() + acquireTimeout;
while (System.currentTimeMillis() < end) {
if (conn.setnx(lockKey, identifier) == ) {
conn.expire(lockKey, lockExpire);
// 返回value值,用于释放锁时间确认
retIdentifier = identifier;
return retIdentifier;
}
// 返回-代表key没有设置超时时间,为key设置一个超时时间
if (conn.ttl(lockKey) == -) {
conn.expire(lockKey, lockExpire);
}
try {
Thread.sleep();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
} catch (JedisException e) {
e.printStackTrace();
} finally {
if (conn != null) {
conn.close();
}
}
return retIdentifier;
}
/**
* 释放锁
* @param lockName 锁的key
* @param identifier 释放锁的标识
* @return
*/
public boolean releaseLock(String lockName, String identifier) {
Jedis conn = null;
String lockKey = "lock:" + lockName;
boolean retFlag = false;
try {
conn = jedisPool.getResource();
while (true) {
// 监视lock,准备开始事务
conn.watch(lockKey);
// 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁
if (identifier.equals(conn.get(lockKey))) {
Transaction transaction = conn.multi();
transaction.del(lockKey);
List<Object> results = transaction.exec();
if(results == null){
continue;
}
retFlag = true;
}
conn.unwatch();
break;
}
}catch(JedisException e){
e.printStackTrace();
}finally{
if(conn!- null){
conn.close();
}
}
return retFlag;
}
}
模拟线程进行秒杀服务
public class ThreadA extends Thread {
private Service service;
public ThreadA(Service service) {
this.service = service;
}
@Override
public void run() {
service.seckill();
}
}
public class Test {
public static void main(String[] args) {
Service service = new Service();
for (int i = 0; i < 50; i++) {
ThreadA threadA = new ThreadA(service);
threadA.start();
}
}
}
结果如下:为有序的
image.png
若注释掉使用锁的部分
public void seckill() {
// 返回锁的value值,供释放锁时候进行判断
//String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
System.out.println(Thread.currentThread().getName() + "获得了锁");
System.out.println(--n);
//lock.releaseLock("resource", indentifier);
}
从结果可以看出,有一些是异步进行的:
image.png
三、三, 基于Zookeeper实现分布式锁
ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。基于ZooKeeper实现分布式锁的步骤如下:
(1)创建一个目录mylock;
(2)线程A想获取锁就在mylock目录下创建临时顺序节点;
(3)获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁;
(4)线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;
(5)线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。
这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。
实现源码如下:
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang.StringUtils;
import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.retry.RetryNTimes;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.data.Stat;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.stereotype.Component;
/**
* 分布式锁Zookeeper实现
*
*/
@Slf4j
@Component
public class ZkLock implements DistributionLock {
private String zkAddress = "zk_adress";
private static final String root = "package root";
private CuratorFramework zkClient;
private final String LOCK_PREFIX = "/lock_";
@Bean
public DistributionLock initZkLock() {
if (StringUtils.isBlank(root)) {
throw new RuntimeException("zookeeper 'root' can't be null");
}
zkClient = CuratorFrameworkFactory
.builder()
.connectString(zkAddress)
.retryPolicy(new RetryNTimes(2000, 20000))
.namespace(root)
.build();
zkClient.start();
return this;
}
public boolean tryLock(String lockName) {
lockName = LOCK_PREFIX+lockName;
boolean locked = true;
try {
Stat stat = zkClient.checkExists().forPath(lockName);
if (stat == null) {
log.info("tryLock:{}", lockName);
stat = zkClient.checkExists().forPath(lockName);
if (stat == null) {
zkClient
.create()
.creatingParentsIfNeeded()
.withMode(CreateMode.EPHEMERAL)
.forPath(lockName, "1".getBytes());
} else {
log.warn("double-check stat.version:{}", stat.getAversion());
locked = false;
}
} else {
log.warn("check stat.version:{}", stat.getAversion());
locked = false;
}
} catch (Exception e) {
locked = false;
}
return locked;
}
public boolean tryLock(String key, long timeout) {
return false;
}
public void release(String lockName) {
lockName = LOCK_PREFIX+lockName;
try {
zkClient
.delete()
.guaranteed()
.deletingChildrenIfNeeded()
.forPath(lockName);
log.info("release:{}", lockName);
} catch (Exception e) {
log.error("删除", e);
}
}
public void setZkAddress(String zkAddress) {
this.zkAddress = zkAddress;
}
}
优点:具备高可用、可重入、阻塞锁特性,可解决失效死锁问题。
缺点:因为需要频繁的创建和删除节点,性能上不如Redis方式
四、对比
数据库分布式锁实现
缺点:
1.db操作性能较差,并且有锁表的风险
2.非阻塞操作失败后,需要轮询,占用cpu资源;
3.长时间不commit或者长时间轮询,可能会占用较多连接资源
Redis(缓存)分布式锁实现
缺点:
1.锁删除失败 过期时间不好控制
2.非阻塞,操作失败后,需要轮询,占用cpu资源;
ZK分布式锁实现
缺点:性能不如redis实现,主要原因是写操作(获取锁释放锁)都需要在Leader上执行,然后同步到follower。
总之:ZooKeeper有较好的性能和可靠性。
从理解的难易程度角度(从低到高)数据库 > 缓存 > Zookeeper
从实现的复杂性角度(从低到高)Zookeeper >= 缓存 > 数据库
从性能角度(从高到低)缓存 > Zookeeper >= 数据库
从可靠性角度(从高到低)Zookeeper > 缓存 > 数据库
五、xxl_job使用数据库层面实现分布式锁
源代码`:
package com.xxl.job.admin.core.thread;
import com.xxl.job.admin.core.conf.XxlJobAdminConfig;
import com.xxl.job.admin.core.cron.CronExpression;
import com.xxl.job.admin.core.model.XxlJobInfo;
import com.xxl.job.admin.core.scheduler.MisfireStrategyEnum;
import com.xxl.job.admin.core.scheduler.ScheduleTypeEnum;
import com.xxl.job.admin.core.trigger.TriggerTypeEnum;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.TimeUnit;
/**
* @author xuxueli 2019-05-21
*/
public class JobScheduleHelper {
private static Logger logger = LoggerFactory.getLogger(JobScheduleHelper.class);
private static JobScheduleHelper instance = new JobScheduleHelper();
public static JobScheduleHelper getInstance(){
return instance;
}
public static final long PRE_READ_MS = 5000; // pre read
private Thread scheduleThread;
private Thread ringThread;
private volatile boolean scheduleThreadToStop = false;
private volatile boolean ringThreadToStop = false;
private volatile static Map<Integer, List<Integer>> ringData = new ConcurrentHashMap<>();
public void start(){
// schedule thread
scheduleThread = new Thread(new Runnable() {
@Override
public void run() {
try {
TimeUnit.MILLISECONDS.sleep(5000 - System.currentTimeMillis()%1000 );
} catch (InterruptedException e) {
if (!scheduleThreadToStop) {
logger.error(e.getMessage(), e);
}
}
logger.info(">>>>>>>>> init xxl-job admin scheduler success.");
// pre-read count: treadpool-size * trigger-qps (each trigger cost 50ms, qps = 1000/50 = 20)
int preReadCount = (XxlJobAdminConfig.getAdminConfig().getTriggerPoolFastMax() + XxlJobAdminConfig.getAdminConfig().getTriggerPoolSlowMax()) * 20;
while (!scheduleThreadToStop) {
// Scan Job
long start = System.currentTimeMillis();
Connection conn = null;
Boolean connAutoCommit = null;
PreparedStatement preparedStatement = null;
boolean preReadSuc = true;
try {
conn = XxlJobAdminConfig.getAdminConfig().getDataSource().getConnection();
connAutoCommit = conn.getAutoCommit();
conn.setAutoCommit(false);
preparedStatement = conn.prepareStatement( "select * from xxl_job_lock where lock_name = 'schedule_lock' for update" );
preparedStatement.execute();
// tx start
// 1、pre read
long nowTime = System.currentTimeMillis();
List<XxlJobInfo> scheduleList = XxlJobAdminConfig.getAdminConfig().getXxlJobInfoDao().scheduleJobQuery(nowTime + PRE_READ_MS, preReadCount);
if (scheduleList!=null && scheduleList.size()>0) {
// 2、push time-ring
for (XxlJobInfo jobInfo: scheduleList) {
// time-ring jump
if (nowTime > jobInfo.getTriggerNextTime() + PRE_READ_MS) {
// 2.1、trigger-expire > 5s:pass && make next-trigger-time
logger.warn(">>>>>>>>>>> xxl-job, schedule misfire, jobId = " + jobInfo.getId());
// 1、misfire match
MisfireStrategyEnum misfireStrategyEnum = MisfireStrategyEnum.match(jobInfo.getMisfireStrategy(), MisfireStrategyEnum.DO_NOTHING);
if (MisfireStrategyEnum.FIRE_ONCE_NOW == misfireStrategyEnum) {
// FIRE_ONCE_NOW 》 trigger
JobTriggerPoolHelper.trigger(jobInfo.getId(), TriggerTypeEnum.MISFIRE, -1, null, null, null);
logger.debug(">>>>>>>>>>> xxl-job, schedule push trigger : jobId = " + jobInfo.getId() );
}
// 2、fresh next
refreshNextValidTime(jobInfo, new Date());
} else if (nowTime > jobInfo.getTriggerNextTime()) {
// 2.2、trigger-expire < 5s:direct-trigger && make next-trigger-time
// 1、trigger
JobTriggerPoolHelper.trigger(jobInfo.getId(), TriggerTypeEnum.CRON, -1, null, null, null);
logger.debug(">>>>>>>>>>> xxl-job, schedule push trigger : jobId = " + jobInfo.getId() );
// 2、fresh next
refreshNextValidTime(jobInfo, new Date());
// next-trigger-time in 5s, pre-read again
if (jobInfo.getTriggerStatus()==1 && nowTime + PRE_READ_MS > jobInfo.getTriggerNextTime()) {
// 1、make ring second
int ringSecond = (int)((jobInfo.getTriggerNextTime()/1000)%60);
// 2、push time ring
pushTimeRing(ringSecond, jobInfo.getId());
// 3、fresh next
refreshNextValidTime(jobInfo, new Date(jobInfo.getTriggerNextTime()));
}
} else {
// 2.3、trigger-pre-read:time-ring trigger && make next-trigger-time
// 1、make ring second
int ringSecond = (int)((jobInfo.getTriggerNextTime()/1000)%60);
// 2、push time ring
pushTimeRing(ringSecond, jobInfo.getId());
// 3、fresh next
refreshNextValidTime(jobInfo, new Date(jobInfo.getTriggerNextTime()));
}
}
// 3、update trigger info
for (XxlJobInfo jobInfo: scheduleList) {
XxlJobAdminConfig.getAdminConfig().getXxlJobInfoDao().scheduleUpdate(jobInfo);
}
} else {
preReadSuc = false;
}
// tx stop
} catch (Exception e) {
if (!scheduleThreadToStop) {
logger.error(">>>>>>>>>>> xxl-job, JobScheduleHelper#scheduleThread error:{}", e);
}
} finally {
// commit
if (conn != null) {
try {
conn.commit();
} catch (SQLException e) {
if (!scheduleThreadToStop) {
logger.error(e.getMessage(), e);
}
}
try {
conn.setAutoCommit(connAutoCommit);
} catch (SQLException e) {
if (!scheduleThreadToStop) {
logger.error(e.getMessage(), e);
}
}
try {
conn.close();
} catch (SQLException e) {
if (!scheduleThreadToStop) {
logger.error(e.getMessage(), e);
}
}
}
// close PreparedStatement
if (null != preparedStatement) {
try {
preparedStatement.close();
} catch (SQLException e) {
if (!scheduleThreadToStop) {
logger.error(e.getMessage(), e);
}
}
}
}
long cost = System.currentTimeMillis()-start;
// Wait seconds, align second
if (cost < 1000) { // scan-overtime, not wait
try {
// pre-read period: success > scan each second; fail > skip this period;
TimeUnit.MILLISECONDS.sleep((preReadSuc?1000:PRE_READ_MS) - System.currentTimeMillis()%1000);
} catch (InterruptedException e) {
if (!scheduleThreadToStop) {
logger.error(e.getMessage(), e);
}
}
}
}
logger.info(">>>>>>>>>>> xxl-job, JobScheduleHelper#scheduleThread stop");
}
});
scheduleThread.setDaemon(true);
scheduleThread.setName("xxl-job, admin JobScheduleHelper#scheduleThread");
scheduleThread.start();
// ring thread
ringThread = new Thread(new Runnable() {
@Override
public void run() {
while (!ringThreadToStop) {
// align second
try {
TimeUnit.MILLISECONDS.sleep(1000 - System.currentTimeMillis() % 1000);
} catch (InterruptedException e) {
if (!ringThreadToStop) {
logger.error(e.getMessage(), e);
}
}
try {
// second data
List<Integer> ringItemData = new ArrayList<>();
int nowSecond = Calendar.getInstance().get(Calendar.SECOND); // 避免处理耗时太长,跨过刻度,向前校验一个刻度;
for (int i = 0; i < 2; i++) {
List<Integer> tmpData = ringData.remove( (nowSecond+60-i)%60 );
if (tmpData != null) {
ringItemData.addAll(tmpData);
}
}
// ring trigger
logger.debug(">>>>>>>>>>> xxl-job, time-ring beat : " + nowSecond + " = " + Arrays.asList(ringItemData) );
if (ringItemData.size() > 0) {
// do trigger
for (int jobId: ringItemData) {
// do trigger
JobTriggerPoolHelper.trigger(jobId, TriggerTypeEnum.CRON, -1, null, null, null);
}
// clear
ringItemData.clear();
}
} catch (Exception e) {
if (!ringThreadToStop) {
logger.error(">>>>>>>>>>> xxl-job, JobScheduleHelper#ringThread error:{}", e);
}
}
}
logger.info(">>>>>>>>>>> xxl-job, JobScheduleHelper#ringThread stop");
}
});
ringThread.setDaemon(true);
ringThread.setName("xxl-job, admin JobScheduleHelper#ringThread");
ringThread.start();
}
private void refreshNextValidTime(XxlJobInfo jobInfo, Date fromTime) throws Exception {
Date nextValidTime = generateNextValidTime(jobInfo, fromTime);
if (nextValidTime != null) {
jobInfo.setTriggerLastTime(jobInfo.getTriggerNextTime());
jobInfo.setTriggerNextTime(nextValidTime.getTime());
} else {
jobInfo.setTriggerStatus(0);
jobInfo.setTriggerLastTime(0);
jobInfo.setTriggerNextTime(0);
logger.warn(">>>>>>>>>>> xxl-job, refreshNextValidTime fail for job: jobId={}, scheduleType={}, scheduleConf={}",
jobInfo.getId(), jobInfo.getScheduleType(), jobInfo.getScheduleConf());
}
}
private void pushTimeRing(int ringSecond, int jobId){
// push async ring
List<Integer> ringItemData = ringData.get(ringSecond);
if (ringItemData == null) {
ringItemData = new ArrayList<Integer>();
ringData.put(ringSecond, ringItemData);
}
ringItemData.add(jobId);
logger.debug(">>>>>>>>>>> xxl-job, schedule push time-ring : " + ringSecond + " = " + Arrays.asList(ringItemData) );
}
public void toStop(){
// 1、stop schedule
scheduleThreadToStop = true;
try {
TimeUnit.SECONDS.sleep(1); // wait
} catch (InterruptedException e) {
logger.error(e.getMessage(), e);
}
if (scheduleThread.getState() != Thread.State.TERMINATED){
// interrupt and wait
scheduleThread.interrupt();
try {
scheduleThread.join();
} catch (InterruptedException e) {
logger.error(e.getMessage(), e);
}
}
// if has ring data
boolean hasRingData = false;
if (!ringData.isEmpty()) {
for (int second : ringData.keySet()) {
List<Integer> tmpData = ringData.get(second);
if (tmpData!=null && tmpData.size()>0) {
hasRingData = true;
break;
}
}
}
if (hasRingData) {
try {
TimeUnit.SECONDS.sleep(8);
} catch (InterruptedException e) {
logger.error(e.getMessage(), e);
}
}
// stop ring (wait job-in-memory stop)
ringThreadToStop = true;
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
logger.error(e.getMessage(), e);
}
if (ringThread.getState() != Thread.State.TERMINATED){
// interrupt and wait
ringThread.interrupt();
try {
ringThread.join();
} catch (InterruptedException e) {
logger.error(e.getMessage(), e);
}
}
logger.info(">>>>>>>>>>> xxl-job, JobScheduleHelper stop");
}
// ---------------------- tools ----------------------
public static Date generateNextValidTime(XxlJobInfo jobInfo, Date fromTime) throws Exception {
ScheduleTypeEnum scheduleTypeEnum = ScheduleTypeEnum.match(jobInfo.getScheduleType(), null);
if (ScheduleTypeEnum.CRON == scheduleTypeEnum) {
Date nextValidTime = new CronExpression(jobInfo.getScheduleConf()).getNextValidTimeAfter(fromTime);
return nextValidTime;
} else if (ScheduleTypeEnum.FIX_RATE == scheduleTypeEnum /*|| ScheduleTypeEnum.FIX_DELAY == scheduleTypeEnum*/) {
return new Date(fromTime.getTime() + Integer.valueOf(jobInfo.getScheduleConf())*1000 );
}
return null;
}
}
image.png