OKHttp拦截器-连接拦截器

2023-03-10  本文已影响0人  PanGeng

这是OKHttp的第三个拦截器 - ConnectInterceptor,如果缓存判定失败,就会走到这里进行真正的网络连接了。

连接池

连接池是对网络连接的一种优化,当需要与服务进行连接的时候,会线程连接池里面查找有没有闲置的连接,如果有那么就直接使用,否则就重新创建一个连接并放入连接池。

constructor() : this(5, 5, TimeUnit.MINUTES)

constructor(
    maxIdleConnections: Int,
    keepAliveDuration: Long,
    timeUnit: TimeUnit
  ) : this(RealConnectionPool(
      taskRunner = TaskRunner.INSTANCE,
      maxIdleConnections = maxIdleConnections,
      keepAliveDuration = keepAliveDuration,
      timeUnit = timeUnit
  ))

连接池和线程池有些相似

maxIdleConnections: 最大闲置的连接数,可以看到,最大连接数为5个

maxIdleConnections: 闲置连接最大存活时间,如果超过了存活时间,那么就会将连接关闭,默认5分钟

timeUnit: 时间单位,默认是分钟

建立连接

object ConnectInterceptor : Interceptor {
  @Throws(IOException::class)
  override fun intercept(chain: Interceptor.Chain): Response {
    val realChain = chain as RealInterceptorChain
    
    val exchange = realChain.call.initExchange(chain)
    val connectedChain = realChain.copy(exchange = exchange)
    return connectedChain.proceed(realChain.request)
  }
}

这个类看似只有几行代码,其实大部分逻辑都封装到其他类里面了,首先我们回顾一下重试和重定向里面的一段代码:

class RetryAndFollowUpInterceptor(private val client: OkHttpClient) : Interceptor {

  @Throws(IOException::class)
  override fun intercept(chain: Interceptor.Chain): Response {
    
    // ................
    
    while (true) {
      call.enterNetworkInterceptorExchange(request, newExchangeFinder)
    }
    // // ................  
  }
  // ................
}

每一次进行网络请求都会走到RealCall.enterNetworkInterceptorExchange()方法:

fun enterNetworkInterceptorExchange(request: Request, newExchangeFinder: Boolean) {
  check(interceptorScopedExchange == null)
  check(exchange == null) {
    "cannot make a new request because the previous response is still open: " +
        "please call response.close()"
  }

  if (newExchangeFinder) {
    this.exchangeFinder = ExchangeFinder(
        connectionPool,
        createAddress(request.url),
        this,
        eventListener
    )
  }
}

可以看到,这里面只初始化了一个exchangeFinder对象,其实这个对象是用来连接的关键所在,在连接拦截器里面才用到了。

val exchange = realChain.call.initExchange(chain)

网络连接的一系列操作都封装到了Exchange对象中,当一个请求发出,需要建立连接,连接建立后需要使用流用来读写数据;而这个Exchange就是协调请求、连接与数据流三者之间的关系,它负责为一次请求寻找连接,然后获得流来实现网络通信。

// RealCall.initExchange()
internal fun initExchange(chain: RealInterceptorChain): Exchange {
    synchronized(connectionPool) {
      check(!noMoreExchanges) { "released" }
      check(exchange == null)
    }
    
    // HttpCodec
    val codec = exchangeFinder!!.find(client, chain)
    val result = Exchange(this, eventListener, exchangeFinder!!, codec)
    this.interceptorScopedExchange = result

    synchronized(connectionPool) {
      this.exchange = result
      this.exchangeRequestDone = false
      this.exchangeResponseDone = false
      return result
    }
}

这里使用的 exchangeFinder!!.find()方法实际上就是去查找或者建立一个与请求主机有效的连接,返回值为ExchangeCodec,包含了输入输出流,并且封装了对HTTP请求报文的编码与解码,直接使用它就能够与请求主机完成HTTP通信。Http1.xHttp2.x实现有所不同,可以看到它最终的两个实现类的创建http2ConnectionHttp1ExchangeCodec

fun find(
    client: OkHttpClient,
    chain: RealInterceptorChain
  ): ExchangeCodec {
    try {
      // 建立连接
      val resultConnection = findHealthyConnection(
          connectTimeout = chain.connectTimeoutMillis,
          readTimeout = chain.readTimeoutMillis,
          writeTimeout = chain.writeTimeoutMillis,
          pingIntervalMillis = client.pingIntervalMillis,
          connectionRetryEnabled = client.retryOnConnectionFailure,
          doExtensiveHealthChecks = chain.request.method != "GET"
      )
      // 创建HttpCodec
      return resultConnection.newCodec(client, chain)
    } catch (e: RouteException) {
      trackFailure(e.lastConnectException)
      throw e
    } catch (e: IOException) {
      trackFailure(e)
      throw RouteException(e)
    }
}

@Throws(SocketException::class)
internal fun newCodec(client: OkHttpClient, chain: RealInterceptorChain): ExchangeCodec {
  val socket = this.socket!!
  val source = this.source!!
  val sink = this.sink!!
  val http2Connection = this.http2Connection

  return if (http2Connection != null) {
    Http2ExchangeCodec(client, this, chain, http2Connection)
  } else {
    socket.soTimeout = chain.readTimeoutMillis()
    source.timeout().timeout(chain.readTimeoutMillis.toLong(), MILLISECONDS)
    sink.timeout().timeout(chain.writeTimeoutMillis.toLong(), MILLISECONDS)
    Http1ExchangeCodec(client, this, source, sink)
  }
}

接下来我们看看resultConnection怎么创建的,跟踪代码:

findHealthyConnection() -> findConnection()

@Throws(IOException::class)
  private fun findConnection(
    connectTimeout: Int,
    readTimeout: Int,
    writeTimeout: Int,
    pingIntervalMillis: Int,
    connectionRetryEnabled: Boolean
  ): RealConnection {
    var foundPooledConnection = false
    var result: RealConnection? = null
    var selectedRoute: Route? = null
    var releasedConnection: RealConnection?
    val toClose: Socket?
    synchronized(connectionPool) {
      if (call.isCanceled()) throw IOException("Canceled")

      val callConnection = call.connection // changes within this overall method
      releasedConnection = callConnection
      toClose = if (callConnection != null && (callConnection.noNewExchanges ||
              !sameHostAndPort(callConnection.route().address.url))) {
        call.releaseConnectionNoEvents()
      } else {
        null
      }

      if (call.connection != null) {
        // We had an already-allocated connection and it's good.
        result = call.connection
        releasedConnection = null
      }

      if (result == null) {
        // The connection hasn't had any problems for this call.
        refusedStreamCount = 0
        connectionShutdownCount = 0
        otherFailureCount = 0

        // Attempt to get a connection from the pool.
        if (connectionPool.callAcquirePooledConnection(address, call, null, false)) {
          foundPooledConnection = true
          result = call.connection
        } else if (nextRouteToTry != null) {
          selectedRoute = nextRouteToTry
          nextRouteToTry = null
        }
      }
    }
    toClose?.closeQuietly()

    if (releasedConnection != null) {
      eventListener.connectionReleased(call, releasedConnection!!)
    }
    if (foundPooledConnection) {
      eventListener.connectionAcquired(call, result!!)
    }
    if (result != null) {
      // If we found an already-allocated or pooled connection, we're done.
      return result!!
    }

    // If we need a route selection, make one. This is a blocking operation.
    var newRouteSelection = false
    if (selectedRoute == null && (routeSelection == null || !routeSelection!!.hasNext())) {
      var localRouteSelector = routeSelector
      if (localRouteSelector == null) {
        localRouteSelector = RouteSelector(address, call.client.routeDatabase, call, eventListener)
        this.routeSelector = localRouteSelector
      }
      newRouteSelection = true
      routeSelection = localRouteSelector.next()
    }

    var routes: List<Route>? = null
    synchronized(connectionPool) {
      if (call.isCanceled()) throw IOException("Canceled")

      if (newRouteSelection) {
        // Now that we have a set of IP addresses, make another attempt at getting a connection from
        // the pool. This could match due to connection coalescing.
        routes = routeSelection!!.routes
        if (connectionPool.callAcquirePooledConnection(address, call, routes, false)) {
          foundPooledConnection = true
          result = call.connection
        }
      }

      if (!foundPooledConnection) {
        if (selectedRoute == null) {
          selectedRoute = routeSelection!!.next()
        }

        // Create a connection and assign it to this allocation immediately. This makes it possible
        // for an asynchronous cancel() to interrupt the handshake we're about to do.
        result = RealConnection(connectionPool, selectedRoute!!)
        connectingConnection = result
      }
    }

    // If we found a pooled connection on the 2nd time around, we're done.
    if (foundPooledConnection) {
      eventListener.connectionAcquired(call, result!!)
      return result!!
    }

    // Do TCP + TLS handshakes. This is a blocking operation.
    result!!.connect(
        connectTimeout,
        readTimeout,
        writeTimeout,
        pingIntervalMillis,
        connectionRetryEnabled,
        call,
        eventListener
    )
    call.client.routeDatabase.connected(result!!.route())

    var socket: Socket? = null
    synchronized(connectionPool) {
      connectingConnection = null
      // Last attempt at connection coalescing, which only occurs if we attempted multiple
      // concurrent connections to the same host.
      if (connectionPool.callAcquirePooledConnection(address, call, routes, true)) {
        // We lost the race! Close the connection we created and return the pooled connection.
        result!!.noNewExchanges = true
        socket = result!!.socket()
        result = call.connection

        // It's possible for us to obtain a coalesced connection that is immediately unhealthy. In
        // that case we will retry the route we just successfully connected with.
        nextRouteToTry = selectedRoute
      } else {
        connectionPool.put(result!!)
        call.acquireConnectionNoEvents(result!!)
      }
    }
    socket?.closeQuietly()

    eventListener.connectionAcquired(call, result!!)
    return result!!
  }

上面这么多代码不需要太多的关注,总体上就是判断了connection是否可复用,如果可以复用直接使用call.connection即可,否则的话创建一个新的连接result = RealConnection(connectionPool, selectedRoute!!),找到了result之后进行三次握手连接:

result!!.connect(
        connectTimeout,
        readTimeout,
        writeTimeout,
        pingIntervalMillis,
        connectionRetryEnabled,
        call,
        eventListener
    )

连接复用

// 判断连接池是否有可复用的连接
if (connectionPool.callAcquirePooledConnection(address, call, routes, false)) {
    foundPooledConnection = true
    result = call.connection
}

最终可以看到满足条件就返回RealConnection

fun callAcquirePooledConnection(
  address: Address,
  call: RealCall,
  routes: List<Route>?,
  requireMultiplexed: Boolean
): Boolean {
  this.assertThreadHoldsLock()

  for (connection in connections) {
    if (requireMultiplexed && !connection.isMultiplexed) continue
    if (!connection.isEligible(address, routes)) continue
    call.acquireConnectionNoEvents(connection)
    return true
  }
  return false
}

看一下if (!connection.isEligible(address, routes))这个条件, 遍历所有的连接,如果满足有条件的返回true,否则返回false

internal fun isEligible(address: Address, routes: List<Route>?): Boolean {
  // If this connection is not accepting new exchanges, we're done.
  if (calls.size >= allocationLimit || noNewExchanges) return false

  // If the non-host fields of the address don't overlap, we're done.
  if (!this.route.address.equalsNonHost(address)) return false

  // If the host exactly matches, we're done: this connection can carry the address.
  if (address.url.host == this.route().address.url.host) {
    return true // This connection is a perfect match.
  }

  // At this point we don't have a hostname match. But we still be able to carry the request if
  // our connection coalescing requirements are met. See also:
  // https://hpbn.co/optimizing-application-delivery/#eliminate-domain-sharding
  // https://daniel.haxx.se/blog/2016/08/18/http2-connection-coalescing/

  // 1. This connection must be HTTP/2.
  if (http2Connection == null) return false

  // 2. The routes must share an IP address.
  if (routes == null || !routeMatchesAny(routes)) return false

  // 3. This connection's server certificate's must cover the new host.
  if (address.hostnameVerifier !== OkHostnameVerifier) return false
  if (!supportsUrl(address.url)) return false

  // 4. Certificate pinning must match the host.
  try {
    address.certificatePinner!!.check(address.url.host, handshake()!!.peerCertificates)
  } catch (_: SSLPeerUnverifiedException) {
    return false
  }

  return true // The caller's address can be carried by this connection.
}
  1. if (calls.size >= allocationLimit || noNewExchanges) return false

    连接到达最大并发流或者连接不允许建立新的流;如http1.x正在使用的连接不能给其他人用(最大并发流为:1)或者连接被关闭;那就不允许复用;

  2. if (!this.route.address.equalsNonHost(address)) return false
    if (address.url.host == this.route().address.url.host) {
        return true // This connection is a perfect match.
    }
    

    DNS、代理、SSL证书、服务器域名、端口完全相同则可复用;

    如果上述条件都不满足,在HTTP/2的某些场景下可能仍可以复用(http2先不管)。

    所以综上,如果在连接池中找到个连接参数一致并且未被关闭没被占用的连接,则可以复用。

总结

这个拦截器中的所有实现都是为了获得一份与目标服务器的连接,在这个连接上进行HTTP数据的收发。

当连接完成,就会继续下一个拦截器CallServerInterceptor

上一篇 下一篇

猜你喜欢

热点阅读