走楼梯——二维有障碍走楼梯(五)
2018-07-07 本文已影响0人
旺叔叔
题目分析:
状态转换方程
dp[i][j] = 1 == obstacleGrid[i][j] ? 0 : dp[i-1][j] + dp[i][j-1];
dp[i][j]代表有多少种方法可到达第i行j列
递推初始项
dp[0][i] = 1 == obstacleGrid[0][i] ? 0 : dp[0][i-1];
dp[i][0] = 1 == obstacleGrid[i][0] ? 0 : dp[i-1][0];
显然dp[0][0] = 1;不过 1 == obstacleGrid[0][0] 时可直接返回0;
和前两题一样,第一行从左往右推,第二行从上往下推。
举例
若obstacleGrid为
{{0, 1, 0},
{0, 1, 0},
{0, 0, 0},
{0, 0, 0}}
则为dp初始化为
{{1,0,0},
{1,0,0},
{1,0,0},
{1,0,0}}
解法一:循环-动态规划
public static int uniquePathsWithObstacles_dp_loop(int[][] obstacleGrid) {
int m = obstacleGrid.length, n = obstacleGrid[0].length;
int [][]dp = new int[m][n];
if(1 == obstacleGrid[0][0])
return 0;
dp[0][0] = 1;
for (int i = 1; i < n; ++i)
dp[0][i] = 1 == obstacleGrid[0][i] ? 0 : dp[0][i-1];
for (int i = 1; i < m; ++i)
dp[i][0] = 1 == obstacleGrid[i][0] ? 0 : dp[i-1][0];
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = 1 == obstacleGrid[i][j] ? 0 : dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
解法二:循环-动态规划-递推过程顺带初始化
public static int uniquePathsWithObstacles_dp_loop_lessTime(int[][] obstacleGrid) {
int m = obstacleGrid.length, n = obstacleGrid[0].length;
int [][]dp = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if(1 == obstacleGrid[i][j])
dp[i][j] = 0;
else if(0 == i && 0 == j)
dp[i][j] = 1;
else if(0 == i && 0 < j)
dp[i][j] = dp[i][j-1];
else if(0 < i && 0 == j)
dp[i][j] = dp[i-1][j];
else
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
解法二分析
利用递推步骤的特性和问题划分方式的特点进行的针对性改写,并无普适性,
放在这里的目的,是让大家明白,网上很多解题报告都有类似的优化和改写,不要因此而惧怕或者被迷惑。
解法三:循环-动态规划-内存优化
public static int uniquePathsWithObstacles_dp_loop_lessMemory(int[][] obstacleGrid) {
int m = obstacleGrid.length, n = obstacleGrid[0].length;
int []dp = new int[n];
dp[0] = 1;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (obstacleGrid[i][j] == 1) dp[j] = 0;
else if (j > 0) dp[j] += dp[j - 1];
}
}
return dp[n - 1];
}
解法四:循环-动态规划-更进一步内存优化
public static int uniquePathsWithObstacles_dp_loop_bestMemory(int[][] obstacleGrid) {
int m = obstacleGrid.length, n = obstacleGrid[0].length;
if(m > n) {
int[] dp = new int[n];
dp[0] = 1;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (obstacleGrid[i][j] == 1) dp[j] = 0;
else if (j > 0) dp[j] += dp[j - 1];
}
}
return dp[n - 1];
}else{
int[] dp = new int[m];
dp[0] = 1;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
if (obstacleGrid[j][i] == 1) dp[j] = 0;
else if (j > 0) dp[j] += dp[j - 1];
}
}
return dp[m - 1];
}
}
总结
状态转换方程开始有条件判断了,并且介绍了一些优化改写的技巧,
只为了展示可以这么写而已,动态规划的核心思想依然是那样。
相应例题的 Github