机器学习2-k近邻算法

2018-08-10  本文已影响0人  Re0

近朱者赤近墨者黑

概述

工作原理

knn算法步骤

  1. 假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。
  2. 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。
    • 计算新数据与样本数据集中每条数据的距离。
    • 对求得的所有距离进行排序(从小到大,越小表示越相似)。
    • 取前 k (k 一般小于等于 20 )个样本数据对应的分类标签。
  3. 求 k 个数据中出现次数最多的分类标签作为新数据的分类。
class KNN():
    """ K Nearest Neighbors classifier.

    Parameters:
    -----------
    k: int
        The number of closest neighbors that will determine the class of the
        sample that we wish to predict.
    """
    def __init__(self, k=5):
        self.k = k

    def _vote(self, neighbor_labels):
        """ Return the most common class among the neighbor samples """
        counts = np.bincount(neighbor_labels.astype('int'))
        return counts.argmax()

    def predict(self, X_test, X_train, y_train):
        y_pred = np.empty(X_test.shape[0])
        # Determine the class of each sample
        for i, test_sample in enumerate(X_test):
            # Sort the training samples by their distance to the test sample and get the K nearest
            idx = np.argsort([euclidean_distance(test_sample, x) for x in X_train])[:self.k]
            # Extract the labels of the K nearest neighboring training samples
            k_nearest_neighbors = np.array([y_train[i] for i in idx])
            # Label sample as the most common class label
            y_pred[i] = self._vote(k_nearest_neighbors)

        return y_pred

knn算法特点

优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型

sklearn实现

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 3

# 导入一些要玩的数据
iris = datasets.load_iris()
X = iris.data[:, :2]  # 我们只采用前两个feature. 我们可以使用二维数据集避免这个丑陋的切片
y = iris.target

h = .02  # 网格中的步长

# 创建彩色的图
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

for weights in ['uniform', 'distance']:
    # 我们创建了一个knn分类器的实例,并拟合数据。
    clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
    clf.fit(X, y)

    # 绘制决策边界。为此,我们将为每个分配一个颜色
    # 来绘制网格中的点 [x_min, x_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    # flatten, 按列拼接
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

    # 将结果放入一个彩色图中
    Z = Z.reshape(xx.shape)
    plt.figure()
    # 预测meshgrid的类别(颜色)
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # 绘制训练点
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("3-Class classification (k = %i, weights = '%s')"
              % (n_neighbors, weights))
plt.show()
上一篇下一篇

猜你喜欢

热点阅读