第八节线性回归
2020-11-02 本文已影响0人
barriers
1线性回归算法特点
线性回归主要用于解决回归问题;
思想简单,实现容易;
许多强大的非线性模型的基础;
结果具有很好的可解释性;
蕴含机器学习中的很多重要思想。
样本特征只有一个,称为简单线性回归
通过分析问题,确定问题的损失函数或者效用函数;通过最优化损失函数或者效用函数,获得机器学习的模型;
2最小二乘法
求取线性回归方程式y=ax+b的过程就是求取损失值最小的过程,就是求sum(abs(yi-yi))最小的过程,由于绝对值不可求导,所以也就可以变成求差值的平方的和的方程,即sum((yi-y
i)2)的最小值,因为y`i = axi + b,所以变相求sum((yi-axi-b)*2)的最小值,根据数学知识,求一个可导方程的极值就是在导数为0时就可得到极值的位置。
2.1线性回归实现
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1,2,3,4,5])
y=np.array([1,3,2,3,5])
plt.scatter(x,y)
plt.show()
x_mean = np.mean(x)
y_mean = np.mean(y)
num, d = 0, 0
for x_i,y_i in zip(x,y):
num += (x_i - x_mean)*(y_i - y_mean)
d += (x_i - x_mean)**2
a = num / d
b = y_mean - a*x_mean
y_hat = a*x+b
plt.scatter(x,y)
plt.plot(x, y_hat, color='green')
plt.axis([0,6,0,6])
2.2线性回归封装
class SimpleLinearRegression1:
def __init__(self):
self.a_ = None
self.b_ = None
def fit(self,x_train,y_train):
assert x_train.ndim == 1, '简单线性回归只能处理一维的数据'
assert len(x_train) == len(y_train), 'x和y的训练数据集的长度需要一样长'
x_mean = np.mean(x_train)
y_mean = np.mean(y_train)
num, d = 0, 0
for x,y in zip(x_train,y_train):
num += (x - x_mean)*(y - y_mean)
d += (x - x_mean)**2
self.a_ = num / d
self.b_ = y_mean - a*x_mean
return self
def predict(self, x_predict):
assert x_predict.ndim == 1, '简单线性回归只能处理一维的数据'
assert self.a_ is not None and self.b_ is not None, '预测之前必须先训练'
return np.array([self._predict(x) for x in x_predict])
def _predict(self, x_single):
return self.a_*x_single + self.b_
3衡量回归算法的标准
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
boston = datasets.load_boston()
# 获取RM特征的下标,为第六列
boston.feature_names
# 使用房间数量这个特征
x=boston.data[:,5]
y = boston.target
x = x[y<50]
y = y[y<50]
plt.scatter(x,y)
from sklearn.model_selection import train_test_split
??train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=666)
from sklearn import linear_model
# sklearn中的mse
from sklearn.metrics import mean_squared_error
# sklearn中的mae
from sklearn.metrics import mean_absolute_error
# sklearn中计算r方的函数
from sklearn.metrics import r2_score
r2_score(y_test,y_predict)
3.1
sklearn中的线性回归封装在linear_model中的LinearRegression
LinearRegression封装了fit,predict,get_params,score,set_params等方法,
score计算的是r方。
4多元线性回归
import numpy as np
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
class LinearRegression:
def __init__(self):
self.coef_ = None
self.interception_ = None
self._theta = None
def fit_normal(self,X_train,y_train):
assert X_train.shape[0] == y_train.shape[0], '特征集和标签集行数需相同'
X_b = np.hstack([np.ones((X_train.shape[0], 1)), X_train])
self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)
self.interception_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def predict(self, X_predict):
assert self.interception_ is not None and self.coef_ is not None, '必须已经训练过了'
assert X_predict.shape[1] == len(self.coef_), '列数需相同'
X_b = np.hstack([np.ones((X_predict.shape[0], 1)), X_predict])
return X_b.dot(self._theta)
def score(self,X_test,y_test):
y_predict = self.predict(X_test)
return r2_score(y_test,y_predict)
boston = datasets.load_boston()
x = boston.data
y=boston.target
x = x[y<50]
y = y[y<50]
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=666)
reg = LinearRegression()
reg.fit_normal(x_train,y_train)
reg.score(x_test,y_test)
5sk-learn中的线性回归
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(x_train,y_train)
lin_reg.score(x_test,y_test)
6knn中的线性回归
from sklearn.neighbors import KNeighborsRegressor
knn_reg = KNeighborsRegressor()
knn_reg.fit(x_train,y_train)
knn_reg.score(x_test,y_test)
7knn网格搜索超参数
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsRegressor
param_grid = [
{'weights':['uniform'],'n_neighbors':[i for i in range(1,11)]},
{'weights':['distance'],'n_neighbors':[i for i in range(1,11)],'p':[i for i in range(1, 6)]},
]
knn_reg = KNeighborsRegressor()
grid_search = GridSearchCV(knn_reg,param_grid, n_jobs=-1, verbose=1)
grid_search.fit(x_test, y_test)
# 看最优参数
grid_search.best_params_
# 使用交叉验证得到的最佳准确率
grid_search.best_score_
# 使用与线性回归相同评估方法获取最佳准确率
grid_search.best_estimator_.score(x_test,y_test)