程序员

《机器学习实战》中SVM算法实现的错误

2020-07-17  本文已影响0人  lightt

最近又看了一遍SVM算法, 理论主要参考了李航老师的《统计学习方法》, 代码实现上参考了《机器学习实战》和smo算法的原始论文。期间发现《机器学习实战》在实现完整版的Platt SMO有点问题。 网上很多SMO的实现的也是参考书上了,而且其中的问题也基本上保留了下来。
SVM的算法推导这里不解释了,推导在最后变成了求解拉格朗日乘子alpha, 然后求出W, b, 代入sign函数实现分类。具体的推导大家可以看看书或者这个博客
另外完全参照论文实现了SMO算法, 详见文章

书中的算法实现

书中的代码和数据也参考了上面的提到的博客
按照书中的完整版SMO算法实现后, 将随机种子random.seed(10)设为10,此时分类效果如下:

SVM效果_seed_10.png 设为100,此时分类效果如下:
SVM效果_seed_100.png

从图中可以明显感觉的支持向量找的不对。seed为10时这几个支持向量的对应的alpha为:

[[0.02612257]]
[[0.01109597]]
[[0.09657277]]
[[0.0147441]]
[[0.01547254]]
[[0.13749869]]
[[0.13749869]]
[[0.05132954]]

都不为0,而且也不是特别小,小到了浮点数精度的值。

现在直接看下代码, 书中的错误用 # TODO进行了标记:

# -*-coding:utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import random

"""
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-10-03
"""


class optStruct:
    """
    数据结构,维护所有需要操作的值
    Parameters:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
    """

    def __init__(self, dataMatIn, classLabels, C, toler):
        self.X = dataMatIn  # 数据矩阵
        self.labelMat = classLabels  # 数据标签
        self.C = C  # 松弛变量
        self.tol = toler  # 容错率
        self.m = np.shape(dataMatIn)[0]  # 数据矩阵行数
        self.alphas = np.mat(np.zeros((self.m, 1)))  # 根据矩阵行数初始化alpha参数为0
        self.b = 0  # 初始化b参数为0
        self.eCache = np.mat(np.zeros((self.m, 2)))  # 根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。


def loadDataSet(fileName):
    """
    读取数据
    Parameters:
        fileName - 文件名
    Returns:
        dataMat - 数据矩阵
        labelMat - 数据标签
    """
    dataMat = []
    labelMat = []
    fr = open(fileName)
    for line in fr.readlines():  # 逐行读取,滤除空格等
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])  # 添加数据
        labelMat.append(float(lineArr[2]))  # 添加标签
    return dataMat, labelMat


def calcEk(oS, k):
    """
    计算误差
    Parameters:
        oS - 数据结构
        k - 标号为k的数据
    Returns:
        Ek - 标号为k的数据误差
    """
    fXk = float(np.multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T) + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek


def selectJrand(i, m):
    """
    函数说明:随机选择alpha_j的索引值

    Parameters:
        i - alpha_i的索引值
        m - alpha参数个数
    Returns:
        j - alpha_j的索引值
    """
    j = i  # 选择一个不等于i的j
    while (j == i):
        j = int(random.uniform(0, m))
    return j


def selectJ(i, oS, Ei):
    """
    内循环启发方式2
    Parameters:
        i - 标号为i的数据的索引值
        oS - 数据结构
        Ei - 标号为i的数据误差
    Returns:
        j, maxK - 标号为j或maxK的数据的索引值
        Ej - 标号为j的数据误差
    """
    maxK = -1
    maxDeltaE = 0
    Ej = 0  # 初始化

    # TODO error1
    oS.eCache[i] = [1, Ei]  # 根据Ei更新误差缓存
    validEcacheList = np.nonzero(oS.eCache[:, 0].A)[0]  # 返回误差不为0的数据的索引值

    if (len(validEcacheList)) > 1:  # 有不为0的误差
        for k in validEcacheList:  # 遍历,找到最大的Ek
            if k == i: continue  # 不计算i,浪费时间
            Ek = calcEk(oS, k)  # 计算Ek
            deltaE = abs(Ei - Ek)  # 计算|Ei-Ek|
            if (deltaE > maxDeltaE):  # 找到maxDeltaE
                maxK = k
                maxDeltaE = deltaE
                Ej = Ek
        return maxK, Ej  # 返回maxK,Ej
    else:  # 没有不为0的误差
        j = selectJrand(i, oS.m)  # 随机选择alpha_j的索引值
        Ej = calcEk(oS, j)  # 计算Ej
    return j, Ej  # j,Ej


def updateEk(oS, k):
    """
    计算Ek,并更新误差缓存
    Parameters:
        oS - 数据结构
        k - 标号为k的数据的索引值
    Returns:
        无
    """
    Ek = calcEk(oS, k)  # 计算Ek
    oS.eCache[k] = [1, Ek]  # 更新误差缓存


def clipAlpha(aj, H, L):
    """
    修剪alpha_j
    Parameters:
        aj - alpha_j的值
        H - alpha上限
        L - alpha下限
    Returns:
        aj - 修剪后的alpah_j的值
    """
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj


def innerL(i, oS):
    """
    优化的SMO算法
    Parameters:
        i - 标号为i的数据的索引值
        oS - 数据结构
    Returns:
        1 - 有任意一对alpha值发生变化
        0 - 没有任意一对alpha值发生变化或变化太小
    """
    # 步骤1:计算误差Ei
    Ei = calcEk(oS, i)
    # 优化alpha,设定一定的容错率。
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
            (oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        # 使用内循环启发方式2选择alpha_j,并计算Ej
        j, Ej = selectJ(i, oS, Ei)
        # 保存更新前的aplpha值,使用深拷贝
        alphaIold = oS.alphas[i].copy()
        alphaJold = oS.alphas[j].copy()
        # 步骤2:计算上下界L和H
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H:
            print("L==H")
            return 0
        # 步骤3:计算eta
        eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
        if eta >= 0:
            print("eta>=0")
            return 0
        # 步骤4:更新alpha_j
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
        # 步骤5:修剪alpha_j
        oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
        # 更新Ej至误差缓存
        # TODO error2
        updateEk(oS, j)
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            print("alpha_j变化太小")
            return 0
        # 步骤6:更新alpha_i
        oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
        # 更新Ei至误差缓存
        # TODO error2
        updateEk(oS, i)
        # 步骤7:更新b_1和b_2
        b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (
                    oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
        b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (
                    oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
        # 步骤8:根据b_1和b_2更新b
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
            oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
            oS.b = b2
        else:
            oS.b = (b1 + b2) / 2.0
        return 1
    else:
        return 0


def smoP(dataMatIn, classLabels, C, toler, maxIter):
    """
    完整的线性SMO算法
    Parameters:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
        maxIter - 最大迭代次数
    Returns:
        oS.b - SMO算法计算的b
        oS.alphas - SMO算法计算的alphas
    """
    oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler)  # 初始化数据结构
    iter = 0  # 初始化当前迭代次数
    entireSet = True
    alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):  # 遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
        alphaPairsChanged = 0
        if entireSet:  # 遍历整个数据集
            for i in range(oS.m):
                alphaPairsChanged += innerL(i, oS)  # 使用优化的SMO算法
                print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter, i, alphaPairsChanged))
            iter += 1
        else:  # 遍历非边界值
            nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]  # 遍历不在边界0和C的alpha
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i, oS)
                print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter, i, alphaPairsChanged))
            iter += 1
        if entireSet:  # 遍历一次后改为非边界遍历
            entireSet = False
        elif (alphaPairsChanged == 0):  # 如果alpha没有更新,计算全样本遍历
            entireSet = True
        print("迭代次数: %d" % iter)
    return oS.b, oS.alphas  # 返回SMO算法计算的b和alphas


def showClassifer(dataMat, classLabels, w, b):
    """
    分类结果可视化
    Parameters:
        dataMat - 数据矩阵
        w - 直线法向量
        b - 直线解决
    Returns:
        无
    """
    # 绘制样本点
    data_plus = []  # 正样本
    data_minus = []  # 负样本
    for i in range(len(dataMat)):
        if classLabels[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)  # 转换为numpy矩阵
    data_minus_np = np.array(data_minus)  # 转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7)  # 正样本散点图
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7)  # 负样本散点图
    # 绘制直线
    x1 = max(dataMat)[0]
    x2 = min(dataMat)[0]
    a1, a2 = w
    b = float(b)
    a1 = float(a1[0])
    a2 = float(a2[0])
    y1, y2 = (-b - a1 * x1) / a2, (-b - a1 * x2) / a2
    plt.plot([x1, x2], [y1, y2])
    # 找出支持向量点
    for i, alpha in enumerate(alphas):
        if abs(alpha) > 0:
            print(alpha)
            x, y = dataMat[i]
            plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolor='red')
    plt.show()


def calcWs(alphas, dataArr, classLabels):
    """
    计算w
    Parameters:
        dataArr - 数据矩阵
        classLabels - 数据标签
        alphas - alphas值
    Returns:
        w - 计算得到的w
    """
    X = np.mat(dataArr)
    labelMat = np.mat(classLabels).transpose()
    m, n = np.shape(X)
    w = np.zeros((n, 1))
    for i in range(m):
        w += np.multiply(alphas[i] * labelMat[i], X[i, :].T)
    return w


if __name__ == '__main__':
    random.seed(10)
    dataArr, classLabels = loadDataSet('testSet.txt')
    b, alphas = smoP(dataArr, classLabels, 0.6, 0.001, 100)
    w = calcWs(alphas, dataArr, classLabels)
    showClassifer(dataArr, classLabels, w, b)

Error1

    oS.eCache[i] = [1, Ei]  # 根据Ei更新误差缓存
    validEcacheList = np.nonzero(oS.eCache[:, 0].A)[0]  # 返回误差不为0的数据的索引值

这段代码的目的是找alpha2, 而alpha2是在那些“非0非C的alpha“(if (number of non-zero & non-C alpha > 1))中寻找。原始代码中第一行更新缓存差不应该在这里更新, 第二行不应该在缓存差中找alpha。
应更改为:

    # oS.eCache[i] = [1, Ei]  # 根据Ei更新误差缓存
    validEcacheList = np.nonzero(oS.alphas)[0]  # 返回误差不为0的数据的索引值

Error2

        # TODO error2
        updateEk(oS, j)
        updateEk(oS, i)

这两行代码是更新缓存差的, 但是位置不对, 原始代码中这两行在更新b之前, 所以此时更新是用新的剪辑过alpha1、alpha2和b_old计算的E1、E2, 这两行代码应该放在更新b之后。

修改后的分类效果

直接看图


改正SVM效果_seed_10.png
改正SVM效果_seed_100.png

改正后不同随机种子分类效果基本相同, 支持向量找的就是这几个。·

上一篇下一篇

猜你喜欢

热点阅读