Python3自学 爬虫实战消息队列MQ(Kafka&RabbitMQ)程序员

消息队列-RabbitMQ

2018-03-09  本文已影响210人  不_一

概念

什么叫消息队列

消息(Message)是指在应用间传送的数据。消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入对象。
消息队列(Message Queue)是一种应用间的通信方式,消息发送后可以立即返回,由消息系统来确保消息的可靠传递。消息发布者只管把消息发布到 MQ 中而不用管谁来取,消息使用者只管从 MQ 中取消息而不管是谁发布的。这样发布者和使用者都不用知道对方的存在。

为何用消息队列

从上面的描述中可以看出消息队列是一种应用间的异步协作机制,那什么时候需要使用 MQ 呢?
以常见的订单系统为例,用户点击【下单】按钮之后的业务逻辑可能包括:扣减库存、生成相应单据、发红包、发短信通知。在业务发展初期这些逻辑可能放在一起同步执行,随着业务的发展订单量增长,需要提升系统服务的性能,这时可以将一些不需要立即生效的操作拆分出来异步执行,比如发放红包、发短信通知等。这种场景下就可以用 MQ ,在下单的主流程(比如扣减库存、生成相应单据)完成之后发送一条消息到 MQ 让主流程快速完结,而由另外的单独线程拉取MQ的消息(或者由 MQ 推送消息),当发现 MQ 中有发红包或发短信之类的消息时,执行相应的业务逻辑。

RabbitMQ

RabbitMQ 是一个由 Erlang 语言开发的 AMQP 的开源实现。
rabbitMQ是一款基于AMQP协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性上表现优秀。使用消息中间件利于应用之间的解耦,生产者(客户端)无需知道消费者(服务端)的存在。而且两端可以使用不同的语言编写,大大提供了灵活性。

示例

生产者:

# ######################### 生产者 #########################
#!/usr/bin/env python
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='hello')
channel.basic_publish(exchange='',
                      routing_key='hello',
                      body='Hello World!')

print(" [x] Sent 'Hello World!'")
connection.close()

消费者:

# ########################## 消费者 ##########################
 
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='hello')
def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
 
channel.basic_consume( callback,
                       queue='hello',
                       no_ack=True)
 
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

基于RabbitMQ的RPC

客户端发送请求:某个应用将请求信息交给客户端,然后客户端发送RPC请求,在发送RPC请求到RPC请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息

服务器端工作流: 等待接受客户端发来RPC请求,当请求出现的时候,服务器从RPC请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中

客户端接受处理结果: 客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用
服务端

#!/usr/bin/env python
import pika

# 建立连接,服务器地址为localhost,可指定ip地址
connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))

# 建立会话
channel = connection.channel()

# 声明RPC请求队列
channel.queue_declare(queue='rpc_queue')

# 数据处理方法
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)

# 对RPC请求队列中的请求进行处理
def on_request(ch, method, props, body):
    n = int(body)

    print(" [.] fib(%s)" % n)

    # 调用数据处理方法
    response = fib(n)

    # 将处理结果(响应)发送到回调队列
    ch.basic_publish(exchange='',
                     routing_key=props.reply_to,
                     properties=pika.BasicProperties(correlation_id = \
                                                         props.correlation_id),
                     body=str(response))
    ch.basic_ack(delivery_tag = method.delivery_tag)

# 负载均衡,同一时刻发送给该服务器的请求不超过一个
channel.basic_qos(prefetch_count=1)

channel.basic_consume(on_request, queue='rpc_queue')

print(" [x] Awaiting RPC requests")
channel.start_consuming()

客户端

#!/usr/bin/env python
import pika
import uuid

class FibonacciRpcClient(object):
    def __init__(self):
        ”“”
        客户端启动时,创建回调队列,会开启会话用于发送RPC请求以及接受响应
        
        “”“
        
        # 建立连接,指定服务器的ip地址
        self.connection = pika.BlockingConnection(pika.ConnectionParameters(
                host='localhost'))
                
        # 建立一个会话,每个channel代表一个会话任务
        self.channel = self.connection.channel()
        
        # 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次
        result = self.channel.queue_declare(exclusive=True)
        # 将次队列指定为当前客户端的回调队列
        self.callback_queue = result.method.queue
        
        # 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理; 
        self.channel.basic_consume(self.on_response, no_ack=True,
                                   queue=self.callback_queue)


    # 对回调队列中的响应进行处理的函数
    def on_response(self, ch, method, props, body):
        if self.corr_id == props.correlation_id:
            self.response = body


    # 发出RPC请求
    def call(self, n):
    
        # 初始化 response
        self.response = None
        
        #生成correlation_id 
        self.corr_id = str(uuid.uuid4())
        
        # 发送RPC请求内容到RPC请求队列`rpc_queue`,同时发送的还有`reply_to`和`correlation_id`
        self.channel.basic_publish(exchange='',
                                   routing_key='rpc_queue',
                                   properties=pika.BasicProperties(
                                         reply_to = self.callback_queue,
                                         correlation_id = self.corr_id,
                                         ),
                                   body=str(n))
                                   
        
        while self.response is None:
            self.connection.process_data_events()
        return int(self.response)

# 建立客户端
fibonacci_rpc = FibonacciRpcClient()
# 发送RPC请求
print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)

总结

概念
RabbitMQ
上一篇 下一篇

猜你喜欢

热点阅读