08.hadoop-maven-intellij-win10环境

2018-05-08  本文已影响0人  伊落

一.软件环境

  1. Intellij Idea
  2. Maven
  3. Hadoop分布式环境
  4. JDK 1.8

二.win10下环境配置

2.1 JDK安装环境变量添加(自行安装)

2.2 maven安装(自行安装)

2.3 Intellij Idea安装(自行安装)

2.4 hadoop安装

QQ图片20180508144543.png
QQ图片20180508144909.png
QQ图片20180508145022.png

三.创建maven工程

  1. 在Intellij中点击File->New->Project,在弹出的对话框中选择Maven,JDK选择1.8,点击Next
    QQ图片20180508145459.png
    QQ图片20180508145608.png
    QQ图片20180508145643.png
  2. java环境检查是否一致
    file -> project structure
    QQ图片20180508151127.png
    file ->setting
    QQ图片20180508151233.png
  3. 修改pom.xml文件
<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <!--项目相关配置-->
    <groupId>com.guider.hadoop</groupId>
    <artifactId>hadoop</artifactId>
    <version>1.0-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>hadoop</name>
    <url>http://maven.apache.org</url>

    <!--编译环境-->
    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
    </properties>

    <!--库下代理服务器-->
    <repositories>
        <repository>
            <id>nexus-aliyun</id>
            <name>Nexus aliyun</name>
            <url>http://maven.aliyun.com/nexus/content/groups/public</url>
        </repository>
    </repositories>

<!--依赖库,添加自己需要的库-->
    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.5.0</version>
        </dependency>

        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.11</version>
            <scope>test</scope>
        </dependency>
    </dependencies>

<!--构建插件配置,自动生成,不用管-->
    <build>
        <pluginManagement><!-- lock down plugins versions to avoid using Maven defaults (may be moved to parent pom) -->
            <plugins>
                <plugin>
                    <artifactId>maven-clean-plugin</artifactId>
                    <version>3.0.0</version>
                </plugin>
                <!-- see http://maven.apache.org/ref/current/maven-core/default-bindings.html#Plugin_bindings_for_jar_packaging -->
                <plugin>
                    <artifactId>maven-resources-plugin</artifactId>
                    <version>3.0.2</version>
                </plugin>
                <plugin>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.7.0</version>
                </plugin>
                <plugin>
                    <artifactId>maven-surefire-plugin</artifactId>
                    <version>2.20.1</version>
                </plugin>
                <plugin>
                    <artifactId>maven-jar-plugin</artifactId>
                    <version>3.0.2</version>
                </plugin>
                <plugin>
                    <artifactId>maven-install-plugin</artifactId>
                    <version>2.5.2</version>
                </plugin>
                <plugin>
                    <artifactId>maven-deploy-plugin</artifactId>
                    <version>2.8.2</version>
                </plugin>
            </plugins>
        </pluginManagement>
    </build>
</project>
  1. 复制配置文件到资源目录下


    QQ图片20180508150157.png
  2. 复制DiskChecker到org.apache.hadoop.util包下面


    QQ图片20180508152913.png

四. 编写WordCount代码

package com.guider.hadoop;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;

public class WordCount extends Configured implements Tool {
    // input -> map -> shuffle -> output
    // mapper,输入数据变成键值对,一行转化为一条
    //1. Map claaa
    public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        private Text mapOutputKey = new Text();
        private IntWritable mapOutputValue = new IntWritable();

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //1.将读取的文件变成,偏移量+内容
            String linevalue = value.toString();
            System.out.println("linevalue----" + linevalue);
            //2.根据“ ”某种规则划分我们的单词,并处理
            String[] strs = linevalue.split(" ");
            for (String str : strs) {
                //key:单词, value:1
                mapOutputKey.set(str);
                mapOutputValue.set(1);
                context.write(mapOutputKey, mapOutputValue);
                System.out.println("str----" + str);
            }
            //3.将结果传递出处
        }
    }

    //2. Reduce class
    //reducer,map的输出就是reduce的输入
    public static class WordCountReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable outputValue = new IntWritable();
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            //汇总
            int sum = 0;
            for (IntWritable value : values){
                sum += value.get();
            }
            outputValue.set(sum);
            context.write(key,outputValue);
        }
    }

    //3. job class
    public int run(String[] args) throws Exception {
        //获取我们的配置
        Configuration conf = new Configuration();
        //Configuration conf = this.getConf();

        Job job = Job.getInstance(conf, this.getClass().getSimpleName());
        //设置input与output
        Path inpath = new Path(args[0]);
        FileInputFormat.addInputPath(job, inpath);
        Path outpath = new Path(args[1]);
        FileOutputFormat.setOutputPath(job, outpath);

        //设置map与
        //需要设置的内容类 + 输出key与value
        job.setMapperClass(WordCountMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        //shuffle优化
//        job.setPartitionerClass(cls);
//        job.setSortComparatorClass(cls);
//        job.setCombinerClass(cls);
//        job.setGroupingComparatorClass(cls);

        //设置reduce
        job.setReducerClass(WordCountReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        //将job交给Yarn
        boolean issucess = job.waitForCompletion(true);
        return issucess ? 0 : 1;
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        //参数
        args = new String[] {
                "hdfs://bigguider22.com:8020/user/root/mapreduce/input",
                "hdfs://bigguider22.com:8020/user/root/mapreduce/output1"
        };
        //跑我们的任务
        int status = new WordCount().run(args);
        //int status = ToolRunner.run(conf,new WordCount(),args);
        System.exit(status);
    }
}
上一篇 下一篇

猜你喜欢

热点阅读