222. 完全二叉树的节点个数

2020-08-17  本文已影响0人  编程小王子AAA

222. 完全二叉树的节点个数

给出一个完全二叉树,求出该树的节点个数。

说明:

完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例:

输入: 
    1
   / \
  2   3
 / \  /
4  5 6

输出: 6

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
  // Return tree depth in O(d) time.
  public int computeDepth(TreeNode node) {
    int d = 0;
    while (node.left != null) {
      node = node.left;
      ++d;
    }
    return d;
  }

  // Last level nodes are enumerated from 0 to 2**d - 1 (left -> right).
  // Return True if last level node idx exists. 
  // Binary search with O(d) complexity.
  public boolean exists(int idx, int d, TreeNode node) {
    int left = 0, right = (int)Math.pow(2, d) - 1;
    int pivot;
    for(int i = 0; i < d; ++i) {
      pivot = left + (right - left) / 2;
      if (idx <= pivot) {
        node = node.left;
        right = pivot;
      }
      else {
        node = node.right;
        left = pivot + 1;
      }
    }
    return node != null;
  }

  public int countNodes(TreeNode root) {
    // if the tree is empty
    if (root == null) return 0;

    int d = computeDepth(root);
    // if the tree contains 1 node
    if (d == 0) return 1;

    // Last level nodes are enumerated from 0 to 2**d - 1 (left -> right).
    // Perform binary search to check how many nodes exist.
    int left = 1, right = (int)Math.pow(2, d) - 1;
    int pivot;
    while (left <= right) {
      pivot = left + (right - left) / 2;
      if (exists(pivot, d, root)) left = pivot + 1;
      else right = pivot - 1;
    }

    // The tree contains 2**d - 1 nodes on the first (d - 1) levels
    // and left nodes on the last level.
    return (int)Math.pow(2, d) - 1 + left;
  }
}
上一篇下一篇

猜你喜欢

热点阅读