spark收藏大数据,机器学习,人工智能

5W字总结Spark(三)(建议收藏)

2022-01-25  本文已影响0人  坨坨的大数据

八、Spark 数据倾斜

详见: 八种解决 Spark 数据倾斜的方法
https://www.jianshu.com/p/a917c9969cff

九、Spark性能优化

Spark调优之RDD算子调优

1. RDD复用

在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如下图所示:

RDD的重复计算

对上图中的RDD计算架构进行修改,得到如下图所示的优化结果:


RDD架构优化

2. 尽早filter

获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率。

本文首发于公众号:五分钟学大数据,欢迎围观!回复【书籍】即可获得上百本大数据书籍

3. 读取大量小文件-用wholeTextFiles

当我们将一个文本文件读取为 RDD 时,输入的每一行都会成为RDD的一个元素。

也可以将多个完整的文本文件一次性读取为一个pairRDD,其中键是文件名,值是文件内容。

val input:RDD[String] = sc.textFile("dir/*.log") 

如果传递目录,则将目录下的所有文件读取作为RDD。文件路径支持通配符。

但是这样对于大量的小文件读取效率并不高,应该使用 wholeTextFiles返回值为RDD[(String, String)],其中Key是文件的名称,Value是文件的内容。

def wholeTextFiles(path: String, minPartitions: Int = defaultMinPartitions): RDD[(String, String)])

wholeTextFiles读取小文件:

val filesRDD: RDD[(String, String)] =
sc.wholeTextFiles("D:\\data\\files", minPartitions = 3)
val linesRDD: RDD[String] = filesRDD.flatMap(_._2.split("\\r\\n"))
val wordsRDD: RDD[String] = linesRDD.flatMap(_.split(" "))
wordsRDD.map((_, 1)).reduceByKey(_ + _).collect().foreach(println)

4. mapPartition和foreachPartition

map(_....) 表示每一个元素

mapPartitions(_....) 表示每个分区的数据组成的迭代器

普通的map算子对RDD中的每一个元素进行操作,而mapPartitions算子对RDD中每一个分区进行操作。

如果是普通的map算子,假设一个partition有1万条数据,那么map算子中的function要执行1万次,也就是对每个元素进行操作。

map 算子

如果是mapPartition算子,由于一个task处理一个RDD的partition,那么一个task只会执行一次function,function一次接收所有的partition数据,效率比较高。

mapPartition 算子

比如,当要把RDD中的所有数据通过JDBC写入数据,如果使用map算子,那么需要对RDD中的每一个元素都创建一个数据库连接,这样对资源的消耗很大,如果使用mapPartitions算子,那么针对一个分区的数据,只需要建立一个数据库连接

mapPartitions算子也存在一些缺点:对于普通的map操作,一次处理一条数据,如果在处理了2000条数据后内存不足,那么可以将已经处理完的2000条数据从内存中垃圾回收掉;但是如果使用mapPartitions算子,但数据量非常大时,function一次处理一个分区的数据,如果一旦内存不足,此时无法回收内存,就可能会OOM,即内存溢出。

因此,mapPartitions算子适用于数据量不是特别大的时候,此时使用mapPartitions算子对性能的提升效果还是不错的。(当数据量很大的时候,一旦使用mapPartitions算子,就会直接OOM)

在项目中,应该首先估算一下RDD的数据量、每个partition的数据量,以及分配给每个Executor的内存资源,如果资源允许,可以考虑使用mapPartitions算子代替map。

rrd.foreache(_....) 表示每一个元素

rrd.forPartitions(_....) 表示每个分区的数据组成的迭代器

在生产环境中,通常使用foreachPartition算子来完成数据库的写入,通过foreachPartition算子的特性,可以优化写数据库的性能。

如果使用foreach算子完成数据库的操作,由于foreach算子是遍历RDD的每条数据,因此,每条数据都会建立一个数据库连接,这是对资源的极大浪费,因此,对于写数据库操作,我们应当使用foreachPartition算子

与mapPartitions算子非常相似,foreachPartition是将RDD的每个分区作为遍历对象,一次处理一个分区的数据,也就是说,如果涉及数据库的相关操作,一个分区的数据只需要创建一次数据库连接,如下图所示:

foreachPartition 算子

使用了foreachPartition 算子后,可以获得以下的性能提升:

  1. 对于我们写的function函数,一次处理一整个分区的数据;
  2. 对于一个分区内的数据,创建唯一的数据库连接;
  3. 只需要向数据库发送一次SQL语句和多组参数;

在生产环境中,全部都会使用foreachPartition算子完成数据库操作。foreachPartition算子存在一个问题,与mapPartitions算子类似,如果一个分区的数据量特别大,可能会造成OOM,即内存溢出

5. filter+coalesce/repartition(减少分区)

在Spark任务中我们经常会使用filter算子完成RDD中数据的过滤,在任务初始阶段,从各个分区中加载到的数据量是相近的,但是一旦进过filter过滤后,每个分区的数据量有可能会存在较大差异,如下图所示:

分区数据过滤结果

根据上图我们可以发现两个问题:

  1. 每个partition的数据量变小了,如果还按照之前与partition相等的task个数去处理当前数据,有点浪费task的计算资源;

  2. 每个partition的数据量不一样,会导致后面的每个task处理每个partition数据的时候,每个task要处理的数据量不同,这很有可能导致数据倾斜问题。

如上图所示,第二个分区的数据过滤后只剩100条,而第三个分区的数据过滤后剩下800条,在相同的处理逻辑下,第二个分区对应的task处理的数据量与第三个分区对应的task处理的数据量差距达到了8倍,这也会导致运行速度可能存在数倍的差距,这也就是数据倾斜问题

针对上述的两个问题,我们分别进行分析:

  1. 针对第一个问题,既然分区的数据量变小了,我们希望可以对分区数据进行重新分配,比如将原来4个分区的数据转化到2个分区中,这样只需要用后面的两个task进行处理即可,避免了资源的浪费。

  2. 针对第二个问题,解决方法和第一个问题的解决方法非常相似,对分区数据重新分配,让每个partition中的数据量差不多,这就避免了数据倾斜问题。

那么具体应该如何实现上面的解决思路?我们需要coalesce算子。

repartition与coalesce都可以用来进行重分区,其中repartition只是coalesce接口中shuffle为true的简易实现,coalesce默认情况下不进行shuffle,但是可以通过参数进行设置。

假设我们希望将原本的分区个数A通过重新分区变为B,那么有以下几种情况:

  1. A > B(多数分区合并为少数分区)
  1. A < B(少数分区分解为多数分区)

此时使用repartition即可,如果使用coalesce需要将shuffle设置为true,否则coalesce无效。

我们可以在filter操作之后,使用coalesce算子针对每个partition的数据量各不相同的情况,压缩partition的数量,而且让每个partition的数据量尽量均匀紧凑,以便于后面的task进行计算操作,在某种程度上能够在一定程度上提升性能

注意:local模式是进程内模拟集群运行,已经对并行度和分区数量有了一定的内部优化,因此不用去设置并行度和分区数量。

6. 并行度设置

Spark作业中的并行度指各个stage的task的数量

如果并行度设置不合理而导致并行度过低,会导致资源的极大浪费,例如,20个Executor,每个Executor分配3个CPU core,而Spark作业有40个task,这样每个Executor分配到的task个数是2个,这就使得每个Executor有一个CPU core空闲,导致资源的浪费。

理想的并行度设置,应该是让并行度与资源相匹配,简单来说就是在资源允许的前提下,并行度要设置的尽可能大,达到可以充分利用集群资源。合理的设置并行度,可以提升整个Spark作业的性能和运行速度。

Spark官方推荐,task数量应该设置为Spark作业总CPU core数量的2~3倍。之所以没有推荐task数量与CPU core总数相等,是因为task的执行时间不同,有的task执行速度快而有的task执行速度慢,如果task数量与CPU core总数相等,那么执行快的task执行完成后,会出现CPU core空闲的情况。如果task数量设置为CPU core总数的2~3倍,那么一个task执行完毕后,CPU core会立刻执行下一个task,降低了资源的浪费,同时提升了Spark作业运行的效率。

Spark作业并行度的设置如下:

val conf = new SparkConf().set("spark.default.parallelism", "500")

原则:让 cpu 的 Core(cpu 核心数) 充分利用起来, 如有100个 Core,那么并行度可以设置为200~300

7. repartition/coalesce调节并行度

我们知道 Spark 中有并行度的调节策略,但是,并行度的设置对于Spark SQL是不生效的,用户设置的并行度只对于Spark SQL以外的所有Spark的stage生效

Spark SQL的并行度不允许用户自己指定,Spark SQL自己会默认根据hive表对应的HDFS文件的split个数自动设置Spark SQL所在的那个stage的并行度,用户自己通 spark.default.parallelism 参数指定的并行度,只会在没Spark SQL的stage中生效。

由于Spark SQL所在stage的并行度无法手动设置,如果数据量较大,并且此stage中后续的transformation操作有着复杂的业务逻辑,而Spark SQL自动设置的task数量很少,这就意味着每个task要处理为数不少的数据量,然后还要执行非常复杂的处理逻辑,这就可能表现为第一个有Spark SQL的stage速度很慢,而后续的没有Spark SQL的stage运行速度非常快。

为了解决Spark SQL无法设置并行度和task数量的问题,我们可以使用repartition算子。

repartition 算子使用前后对比图如下:

repartition 算子使用前后对比图

Spark SQL这一步的并行度和task数量肯定是没有办法去改变了,但是,对于Spark SQL查询出来的RDD,立即使用repartition算子,去重新进行分区,这样可以重新分区为多个partition,从repartition之后的RDD操作,由于不再涉及Spark SQL,因此stage的并行度就会等于你手动设置的值,这样就避免了Spark SQL所在的stage只能用少量的task去处理大量数据并执行复杂的算法逻辑。使用repartition算子的前后对比如上图所示

8. reduceByKey本地预聚合

reduceByKey相较于普通的shuffle操作一个显著的特点就是会进行map端的本地聚合,map端会先对本地的数据进行combine操作,然后将数据写入给下个stage的每个task创建的文件中,也就是在map端,对每一个key对应的value,执行reduceByKey算子函数。

reduceByKey算子的执行过程如下图所示:

reduceByKey 算子执行过程

使用reduceByKey对性能的提升如下:

  1. 本地聚合后,在map端的数据量变少,减少了磁盘IO,也减少了对磁盘空间的占用;
  2. 本地聚合后,下一个stage拉取的数据量变少,减少了网络传输的数据量;
  3. 本地聚合后,在reduce端进行数据缓存的内存占用减少;
  4. 本地聚合后,在reduce端进行聚合的数据量减少。

基于reduceByKey的本地聚合特征,我们应该考虑使用reduceByKey代替其他的shuffle算子,例如groupByKey。

groupByKey与reduceByKey的运行原理如下图1和图2所示:

图1:groupByKey原理 图2:reduceByKey原理

根据上图可知,groupByKey不会进行map端的聚合,而是将所有map端的数据shuffle到reduce端,然后在reduce端进行数据的聚合操作。由于reduceByKey有map端聚合的特性,使得网络传输的数据量减小,因此效率要明显高于groupByKey。

9. 使用持久化+checkpoint

Spark持久化在大部分情况下是没有问题的,但是有时数据可能会丢失,如果数据一旦丢失,就需要对丢失的数据重新进行计算,计算完后再缓存和使用,为了避免数据的丢失,可以选择对这个RDD进行checkpoint,也就是将数据持久化一份到容错的文件系统上(比如HDFS)

一个RDD缓存并checkpoint后,如果一旦发现缓存丢失,就会优先查看checkpoint数据存不存在,如果有,就会使用checkpoint数据,而不用重新计算。也即是说,checkpoint可以视为cache的保障机制,如果cache失败,就使用checkpoint的数据。

使用checkpoint的优点在于提高了Spark作业的可靠性,一旦缓存出现问题,不需要重新计算数据,缺点在于,checkpoint时需要将数据写入HDFS等文件系统,对性能的消耗较大

持久化设置如下:

sc.setCheckpointDir(‘HDFS’)
rdd.cache/persist(memory_and_disk)
rdd.checkpoint

10. 使用广播变量

默认情况下,task中的算子中如果使用了外部的变量,每个task都会获取一份变量的复本,这就造成了内存的极大消耗。一方面,如果后续对RDD进行持久化,可能就无法将RDD数据存入内存,只能写入磁盘,磁盘IO将会严重消耗性能;另一方面,task在创建对象的时候,也许会发现堆内存无法存放新创建的对象,这就会导致频繁的GC,GC会导致工作线程停止,进而导致Spark暂停工作一段时间,严重影响Spark性能。

假设当前任务配置了20个Executor,指定500个task,有一个20M的变量被所有task共用,此时会在500个task中产生500个副本,耗费集群10G的内存,如果使用了广播变量, 那么每个Executor保存一个副本,一共消耗400M内存,内存消耗减少了5倍。

广播变量在每个Executor保存一个副本,此Executor的所有task共用此广播变量,这让变量产生的副本数量大大减少。

在初始阶段,广播变量只在Driver中有一份副本。task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中尝试获取变量,如果本地没有,BlockManager就会从Driver或者其他节点的BlockManager上远程拉取变量的复本,并由本地的BlockManager进行管理;之后此Executor的所有task都会直接从本地的BlockManager中获取变量。

对于多个Task可能会共用的数据可以广播到每个Executor上:

val 广播变量名= sc.broadcast(会被各个Task用到的变量,即需要广播的变量)

广播变量名.value//获取广播变量

11. 使用Kryo序列化

默认情况下,Spark使用Java的序列化机制。Java的序列化机制使用方便,不需要额外的配置,在算子中使用的变量实现Serializable接口即可,但是,Java序列化机制的效率不高,序列化速度慢并且序列化后的数据所占用的空间依然较大。

Spark官方宣称Kryo序列化机制比Java序列化机制性能提高10倍左右,Spark之所以没有默认使用Kryo作为序列化类库,是因为它不支持所有对象的序列化,同时Kryo需要用户在使用前注册需要序列化的类型,不够方便,但从Spark 2.0.0版本开始,简单类型、简单类型数组、字符串类型的Shuffling RDDs 已经默认使用Kryo序列化方式了

Kryo序列化注册方式的代码如下:

public class MyKryoRegistrator implements KryoRegistrator{
  @Override
  public void registerClasses(Kryo kryo){
    kryo.register(StartupReportLogs.class);
  }
}

配置Kryo序列化方式的代码如下:

//创建SparkConf对象
val conf = new SparkConf().setMaster(…).setAppName(…)
//使用Kryo序列化库
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");  
//在Kryo序列化库中注册自定义的类集合
conf.set("spark.kryo.registrator", "bigdata.com.MyKryoRegistrator"); 

本文档首发于公众号:五分钟学大数据,回复【666】即可获得全套大数据笔面试教程

Spark调优之Shuffle调优

1. map和reduce端缓冲区大小

在Spark任务运行过程中,如果shuffle的map端处理的数据量比较大,但是map端缓冲的大小是固定的,可能会出现map端缓冲数据频繁spill溢写到磁盘文件中的情况,使得性能非常低下,通过调节map端缓冲的大小,可以避免频繁的磁盘IO操作,进而提升Spark任务的整体性能。

map端缓冲的默认配置是32KB,如果每个task处理640KB的数据,那么会发生640/32 = 20次溢写,如果每个task处理64000KB的数据,即会发生64000/32=2000次溢写,这对于性能的影响是非常严重的。

map端缓冲的配置方法:

val conf = new SparkConf()
  .set("spark.shuffle.file.buffer", "64")

Spark Shuffle过程中,shuffle reduce task的buffer缓冲区大小决定了reduce task每次能够缓冲的数据量,也就是每次能够拉取的数据量,如果内存资源较为充足,适当增加拉取数据缓冲区的大小,可以减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。

reduce端数据拉取缓冲区的大小可以通过spark.reducer.maxSizeInFlight参数进行设置,默认为48MB。该参数的设置方法如下:

reduce端数据拉取缓冲区配置:

val conf = new SparkConf()
  .set("spark.reducer.maxSizeInFlight", "96")

2. reduce端重试次数和等待时间间隔

Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试。对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。

reduce端拉取数据重试次数可以通过spark.shuffle.io.maxRetries参数进行设置,该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败,默认为3,该参数的设置方法如下:

reduce端拉取数据重试次数配置:

val conf = new SparkConf()
  .set("spark.shuffle.io.maxRetries", "6")

Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试,在一次失败后,会等待一定的时间间隔再进行重试,可以通过加大间隔时长(比如60s),以增加shuffle操作的稳定性

reduce端拉取数据等待间隔可以通过spark.shuffle.io.retryWait参数进行设置,默认值为5s,该参数的设置方法如下:

reduce端拉取数据等待间隔配置:

val conf = new SparkConf()
  .set("spark.shuffle.io.retryWait", "60s")

3. bypass机制开启阈值

对于SortShuffleManager,如果shuffle reduce task的数量小于某一阈值则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。

当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量,那么此时map-side就不会进行排序了,减少了排序的性能开销,但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。

SortShuffleManager排序操作阈值的设置可以通过spark.shuffle.sort.bypassMergeThreshold这一参数进行设置,默认值为200,该参数的设置方法如下:

reduce端拉取数据等待间隔配置:

val conf = new SparkConf()
  .set("spark.shuffle.sort.bypassMergeThreshold", "400")

十一、Spark大厂面试真题

详见:# Spark面试题汇总及答案(推荐收藏)

https://www.jianshu.com/p/8cb8ef2beee0

上一篇 下一篇

猜你喜欢

热点阅读