最简单的回归模型-线性回归及其变体_chapter6

2022-01-23  本文已影响0人  ADO_AI

一、在建立线性回归模型之前需要考虑的:

二、线性回归模型及其变体

n>>p

- 3.1 将PLS的步骤分解为三个步骤:一个维度为P * P的“核”矩阵,预测变量的协方差矩阵(P * P ),以及预测变量与响应变量的协方差矩阵(P*1);这种类似于矩阵分解的算法提升了运算效率,包括de Jong 和 Ter Braak1994;Dayal和MacGregor 1997所提出的算法

- 3.2 将目标转化为“在预测变量空间中寻找潜在的正交变量,使其最大化与响应变量的协方差”;这一视角的转变使得目标转化为了缩减预测变量与响应变量之间的协方差矩阵(P*1),即SIMPLS

p>n: Rannar 1994

当然,PLS算法无论如何改进,其仍然是对原始预测变量空间进行线性变换得到其子空间,进而与响应变量进行关联;如果预测变量空间与响应变量之间原本就具有的是“非线性相关/关联”,那这是PLS或者所有线性回归家族算法无法逾越的障碍。只能借助于非线性算法来解决问题。

最小二乘法回归与各带惩罚项线性回归的公式比较 image.png image.png

参考文献

R的glmnet和caret分别实现ElasticNetwork、LASSO、Ridge
R包ElasticNetwork算法原理和实现
LASSO、Ridge、ElasticNetwork的对比和适应证

上一篇下一篇

猜你喜欢

热点阅读