21-增加变量显示
2019-10-05 本文已影响0人
jxvl假装
目的:观察模型的参数、损失值等变量值的变化
- 收集变量
- tf.summary.scalar(name="", tensor) 收集损失函数等和准确率等单值变量,name为变量的名字,tensor为值
- tf.summary.histogram(name="", tensor) 收集高维度的变量参数
- tf.summary.image(name="", tensor) 收集输入的图片张量能显示图片
- 合并变量写入事件文件
- merged=tf.summary.merge_all()
- 运行合并:summary = ses.run(merged) 每次迭代都需运行
- 添加:FileWriter.ad_summary(summary, i) i表示第几次的值
import tensorflow as tf
def myregression():
"""
自实现一个线性回归预测
:return: None
"""
with tf.variable_scope("variable"):
#准备数据
x = tf.random_normal([100, 1], mean=1.75, stddev=0.5, name="x_data")
y_true = tf.matmul(x, [[0.7]]) + 0.8 #矩阵相乘必须是2维的
with tf.variable_scope("model"):
#建立线回归模型
weight = tf.Variable(tf.random_normal([1, 1], mean=0.0, stddev=1.0, name="weight"))
bias = tf.Variable(0.0, name="bias")
y_predict = tf.matmul(x, weight) + bias
with tf.variable_scope("loss"):
#建立损失函数,均方误差
loss = tf.reduce_mean(tf.square(y_predict-y_true)) #reduce_mean是计算平均值
with tf.variable_scope("optimizer"):
#梯度下降优化损失
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss) #梯度下降去进行优化,即最小化损失,所以后面加了minimize
#1. 收集变量:一般在会话之前
tf.summary.scalar("losses", loss)
tf.summary.histogram("weights", weight)
#2. 合并变量,写入事件文件
#定义合并变量的op
merged = tf.summary.merge_all()
#定义一个初始化变量的op
init_op = tf.global_variables_initializer()
#通过会话运行程序
with tf.Session() as sess:
#初始化变量
sess.run(init_op)
#打印随机初始化的权重和偏置值
print("随机初始化的参数权重为:\n", weight.eval(), "\n偏置为:\n", bias.eval())
#运行优化
#循环训练优化
filewriter = tf.summary.FileWriter("./", graph=sess.graph)
for i in range(1000):
sess.run(train_op)
print("优化",i,"次优化过后的参数权重为:", weight.eval(), " 偏置为:", bias.eval())
#运行合并的tensor
summary = sess.run(merged)
#把每次的值写入文件
filewriter.add_summary(summary, i)
return None
if __name__ == "__main__":
myregression()
