Java实现雪花算法(SnowFlake)
2021-10-20 本文已影响0人
lry102
雪花算法SnowFlake可以保证:
1.所有生成的id按时间趋势递增
2.整个分布式系统内不会产生重复id(通过workerId和datacenterId来做区分)
算法实现
import java.util.Random;
public class IdWorker {
//下面两个每个5位,加起来就是10位的工作机器id
private long workerId; //工作ID 2进制5位 数值0-31
private long datacenterId; //数据id 2进制5位 数值0-31
//12位的序列号
private long sequence;
public IdWorker(long workerId, long datacenterId, long sequence) {
// sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
}
//初始时间戳
private long twepoch = 1288834974657L;
//长度为5位
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
//最大值
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
//序列号id长度
private long sequenceBits = 12L;
//序列号最大值
private long sequenceMask = -1L ^ (-1L << sequenceBits);
//工作id需要左移的位数,12位
private long workerIdShift = sequenceBits;
//数据id需要左移位数 12+5=17位
private long datacenterIdShift = sequenceBits + workerIdBits;
//时间戳需要左移位数 12+5+5=22位
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
//上次时间戳,初始值为负数
private long lastTimestamp = -1L;
//下一个ID生成算法
public synchronized long nextId() {
long timestamp = timeGen();
//获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
}
//获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}
//将上次时间戳值刷新
lastTimestamp = timestamp;
/**
* 返回结果:
* (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数
* (datacenterId << datacenterIdShift) 表示将数据id左移相应位数
* (workerId << workerIdShift) 表示将工作id左移相应位数
* | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。
* 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id
*/
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
}
/**
* 获取时间戳,并与上次时间戳比较
* @param lastTimestamp
* @return
*/
private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 获取系统时间戳
*/
private long timeGen() {
return System.currentTimeMillis();
}
/**
* 这里简单实现,通过随机数生成工作ID、数据ID
* 不生成重复id要通过datacenterId和workerId来做区分
*/
private static class SingletonClassInstance {
static Random random = new Random();
private static final IdWorker instance = new IdWorker(random.nextInt(31), random.nextInt(31), 1);
}
/**
* 单例调用入口
*/
public static IdWorker getInstance() {
return SingletonClassInstance.instance;
}
//---------------测试---------------
public static void main(String[] args) {
for (int i = 0; i < 30; i++) {
System.out.println(IdWorker.getInstance().nextId());
}
}
}
文章代码参考自煲煲菜的博客
如有侵权之处请留言告知,会立即删除。