机器学习和人工智能入门程序员机器学习与数据挖掘

白话深度学习与TensorFlow(一)

2017-11-30  本文已影响306人  dreamkong

第一章 机器学习是什么

机器学习种类

聚类(clustering)

聚类是一种典型的“无监督学习”,是把物理对象或抽象对象的集合分组为由彼此类似的对象组成的多个类的分析过程。

简单来讲,就是一个归类的过程,我们在动物园看到的金丝猴、猕猴、长鼻猴等,它们都属于猴子类。马路上看到的各种小轿车、卡车、跑车等等,它们都属于汽车类。

比较常用的聚类算法:

基本思路都是利用每个向量之间的“距离”--空间中的欧氏距离或者曼哈顿距离,从远近判断是否从属于同一类别。

image

在用机器做聚类学习的时候,我们每种算法都对应有相应的计算原则,可以把输入的各种看上去彼此“相近”的向量分在同一个群组中。

回归(regression)

回归是一种解题方法,或者说“学习方法”,也是机器学习中比较重要的内容。

简单来讲,就是“由果索因”的过程,是一种归纳的思想--通过大量的样本,推测出其中蕴含的某种关系。

最常用的回归有两大类:

分类

分类是机器学习中使用的最多的一大类算法,我们通常也喜欢把分类算法叫做“分类器”。

我们在编写代码教会分类器怎么学习的时候,其实是在教它如何建立一种输入到输出的映射逻辑,以及让它自己调整这种逻辑关系,使得逻辑更为合理。而合理与否的判断也非常明确,那就是召回率和精确率两个指标--召回率指的是检索出的相关样本和样本库中所有相关样本的比率,衡量的是分类器的查全率。精确率是检索出的相关样本数与检索出的样本数的比率,衡量的是分类器的查准率。

具体例子:
有一个1000样本的训练集,1000张照片,200张猫,200张狗,600张兔子。经过分类器分类:

  • 200张猫中180张正确,20张识别为狗
  • 200张狗全部正确
  • 600张兔子中550张正确,30张识别为猫,20张识别为狗
image

综合应用

小结

一言蔽之,机器学习就是人类定义一定的计算机算法,让计算机根据输入的样本和一些人类的干预来总结并归纳其特征与特点,并用这些特征和特点与一定的学习目标形成映射关系,进而自动化地做出相应反应的过程。

作者认为,机器学习是大数据的一个子范畴。

机器学习也分为:

  • 传统的机器学习
  • 深度学习

其主要区别:传统的机器学习通常需要人提前做特征提取,把提取的特征向量化在丢给模型去训练,需要人做前置工作。而深度学习通常可以采用End-to-End的学习方式,输入的内容只需要做很少的一些归-化(normalization)、白化(whitening)等处理就可以丢给模型去训练,通常不需要人来做特征提取工作。

上一篇 下一篇

猜你喜欢

热点阅读