5、TFRecord(管理数据)

2019-11-09  本文已影响0人  MakeStart

TFRecord产生的背景:
一般情况下数据集经常分为 train, test 文件夹,文件夹内部往往会存着成千上万的图片或文本等文件,这些文件被散列存着,不仅占用磁盘空间,读取的时候频繁访问磁盘,会非常慢。TFRecord内部使用了“Protocol Buffer”二进制数据编码方案,它只占用一个内存块,只需要一次性加载一个二进制文件的方式即可,简单,快速,尤其对大型训练数据很友好。而且当我们的训练数据量比较大的时候,可以将数据分成多个TFRecord文件,来提高处理效率
下面分为3个方面说明其如何使用:代码结构,TFRecord创建,TFRecord读取

1、代码结构:

image.png

2、TFRecord创建

#coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from datetime import datetime
import os
import random
import sys
import threading


import numpy as np
import tensorflow as tf

tf.app.flags.DEFINE_string('train_directory', './flower_photos/',
                           'Training data directory')
tf.app.flags.DEFINE_string('validation_directory', './flower_photos/',
                           'Validation data directory')
tf.app.flags.DEFINE_string('output_directory', './data/',
                           'Output data directory')

tf.app.flags.DEFINE_integer('train_shards', 2,
                            'Number of shards in training TFRecord files.')
tf.app.flags.DEFINE_integer('validation_shards', 0,
                            'Number of shards in validation TFRecord files.')

tf.app.flags.DEFINE_integer('num_threads', 2,
                            'Number of threads to preprocess the images.')

# The labels file contains a list of valid labels are held in this file.
# Assumes that the file contains entries as such:
#   dog
#   cat
#   flower
# where each line corresponds to a label. We map each label contained in
# the file to an integer corresponding to the line number starting from 0.
tf.app.flags.DEFINE_string('labels_file', './flower_label.txt', 'Labels file')


FLAGS = tf.app.flags.FLAGS


def _int64_feature(value):
  """Wrapper for inserting int64 features into Example proto."""
  if not isinstance(value, list):
    value = [value]
  return tf.train.Feature(int64_list=tf.train.Int64List(value=value))


def _bytes_feature(value):
  """Wrapper for inserting bytes features into Example proto."""
  return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def _convert_to_example(filename, image_buffer, label, text, height, width):
  """Build an Example proto for an example.

  Args:
    filename: string, path to an image file, e.g., '/path/to/example.JPG'
    image_buffer: string, JPEG encoding of RGB image
    label: integer, identifier for the ground truth for the network
    text: string, unique human-readable, e.g. 'dog'
    height: integer, image height in pixels
    width: integer, image width in pixels
  Returns:
    Example proto
  """

  colorspace = 'RGB'
  channels = 3
  image_format = 'JPEG'

  example = tf.train.Example(features=tf.train.Features(feature={
      'image/height': _int64_feature(height),
      'image/width': _int64_feature(width),
      'image/colorspace': _bytes_feature(tf.compat.as_bytes(colorspace)),
      'image/channels': _int64_feature(channels),
      'image/class/label': _int64_feature(label),
      'image/class/text': _bytes_feature(tf.compat.as_bytes(text)),
      'image/format': _bytes_feature(tf.compat.as_bytes(image_format)),
      'image/filename': _bytes_feature(tf.compat.as_bytes(os.path.basename(filename))),
      'image/encoded': _bytes_feature(tf.compat.as_bytes(image_buffer))}))
  return example


class ImageCoder(object):
  """Helper class that provides TensorFlow image coding utilities."""

  def __init__(self):
    # Create a single Session to run all image coding calls.
    self._sess = tf.Session()

    # Initializes function that converts PNG to JPEG data.
    self._png_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_png(self._png_data, channels=3)
    self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)

    # Initializes function that decodes RGB JPEG data.
    self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)

  def png_to_jpeg(self, image_data):
    return self._sess.run(self._png_to_jpeg,
                          feed_dict={self._png_data: image_data})

  def decode_jpeg(self, image_data):
    image = self._sess.run(self._decode_jpeg,
                           feed_dict={self._decode_jpeg_data: image_data})
    assert len(image.shape) == 3
    assert image.shape[2] == 3
    return image


def _is_png(filename):
  """Determine if a file contains a PNG format image.

  Args:
    filename: string, path of the image file.

  Returns:
    boolean indicating if the image is a PNG.
  """
  return '.png' in filename


def _process_image(filename, coder):
  """Process a single image file.

  Args:
    filename: string, path to an image file e.g., '/path/to/example.JPG'.
    coder: instance of ImageCoder to provide TensorFlow image coding utils.
  Returns:
    image_buffer: string, JPEG encoding of RGB image.
    height: integer, image height in pixels.
    width: integer, image width in pixels.
  """
  # Read the image file.
  with tf.gfile.FastGFile(filename, 'rb') as f:
    image_data = f.read()

  # Convert any PNG to JPEG's for consistency.
  if _is_png(filename):
    print('Converting PNG to JPEG for %s' % filename)
    image_data = coder.png_to_jpeg(image_data)

  # Decode the RGB JPEG.
  image = coder.decode_jpeg(image_data)

  # Check that image converted to RGB
  assert len(image.shape) == 3
  height = image.shape[0]
  width = image.shape[1]
  assert image.shape[2] == 3

  return image_data, height, width


def _process_image_files_batch(coder, thread_index, ranges, name, filenames,
                               texts, labels, num_shards):
  """Processes and saves list of images as TFRecord in 1 thread.

  Args:
    coder: instance of ImageCoder to provide TensorFlow image coding utils.
    thread_index: integer, unique batch to run index is within [0, len(ranges)).
    ranges: list of pairs of integers specifying ranges of each batches to
      analyze in parallel.
    name: string, unique identifier specifying the data set
    filenames: list of strings; each string is a path to an image file
    texts: list of strings; each string is human readable, e.g. 'dog'
    labels: list of integer; each integer identifies the ground truth
    num_shards: integer number of shards for this data set.
  """
  # Each thread produces N shards where N = int(num_shards / num_threads).
  # For instance, if num_shards = 128, and the num_threads = 2, then the first
  # thread would produce shards [0, 64).
  num_threads = len(ranges)
  assert not num_shards % num_threads
  num_shards_per_batch = int(num_shards / num_threads)

  shard_ranges = np.linspace(ranges[thread_index][0],
                             ranges[thread_index][1],
                             num_shards_per_batch + 1).astype(int)
  num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0]

  counter = 0
  for s in range(num_shards_per_batch):
    # Generate a sharded version of the file name, e.g. 'train-00002-of-00010'
    shard = thread_index * num_shards_per_batch + s
    output_filename = '%s-%.5d-of-%.5d.tfrecord' % (name, shard, num_shards)
    output_file = os.path.join(FLAGS.output_directory, output_filename)
    writer = tf.python_io.TFRecordWriter(output_file)

    shard_counter = 0
    files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int)
    for i in files_in_shard:
      filename = filenames[i]
      label = labels[i]
      text = texts[i]

      image_buffer, height, width = _process_image(filename, coder)

      example = _convert_to_example(filename, image_buffer, label,
                                    text, height, width)
      writer.write(example.SerializeToString())
      shard_counter += 1
      counter += 1

      if not counter % 1000:
        print('%s [thread %d]: Processed %d of %d images in thread batch.' %
              (datetime.now(), thread_index, counter, num_files_in_thread))
        sys.stdout.flush()

    writer.close()
    print('%s [thread %d]: Wrote %d images to %s' %
          (datetime.now(), thread_index, shard_counter, output_file))
    sys.stdout.flush()
    shard_counter = 0
  print('%s [thread %d]: Wrote %d images to %d shards.' %
        (datetime.now(), thread_index, counter, num_files_in_thread))
  sys.stdout.flush()


def _process_image_files(name, filenames, texts, labels, num_shards):
  """Process and save list of images as TFRecord of Example protos.

  Args:
    name: string, unique identifier specifying the data set
    filenames: list of strings; each string is a path to an image file
    texts: list of strings; each string is human readable, e.g. 'dog'
    labels: list of integer; each integer identifies the ground truth
    num_shards: integer number of shards for this data set.
  """
  assert len(filenames) == len(texts)
  assert len(filenames) == len(labels)

  # Break all images into batches with a [ranges[i][0], ranges[i][1]].
  spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int)
  ranges = []
  for i in range(len(spacing) - 1):
    ranges.append([spacing[i], spacing[i+1]])

  # Launch a thread for each batch.
  print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges))
  sys.stdout.flush()

  # Create a mechanism for monitoring when all threads are finished.
  coord = tf.train.Coordinator()

  # Create a generic TensorFlow-based utility for converting all image codings.
  coder = ImageCoder()

  threads = []
  for thread_index in range(len(ranges)):
    args = (coder, thread_index, ranges, name, filenames,
            texts, labels, num_shards)
    t = threading.Thread(target=_process_image_files_batch, args=args)
    t.start()
    threads.append(t)

  # Wait for all the threads to terminate.
  coord.join(threads)
  print('%s: Finished writing all %d images in data set.' %
        (datetime.now(), len(filenames)))
  sys.stdout.flush()


def _find_image_files(data_dir, labels_file):
  """Build a list of all images files and labels in the data set.

  Args:
    data_dir: string, path to the root directory of images.

      Assumes that the image data set resides in JPEG files located in
      the following directory structure.

        data_dir/dog/another-image.JPEG
        data_dir/dog/my-image.jpg

      where 'dog' is the label associated with these images.

    labels_file: string, path to the labels file.

      The list of valid labels are held in this file. Assumes that the file
      contains entries as such:
        dog
        cat
        flower
      where each line corresponds to a label. We map each label contained in
      the file to an integer starting with the integer 0 corresponding to the
      label contained in the first line.

  Returns:
    filenames: list of strings; each string is a path to an image file.
    texts: list of strings; each string is the class, e.g. 'dog'
    labels: list of integer; each integer identifies the ground truth.
  """
  print('目标文件夹位置: %s.' % data_dir)
  unique_labels = [l.strip() for l in tf.gfile.FastGFile(
      labels_file, 'r').readlines()]

  labels = []
  filenames = []
  texts = []

  # Leave label index 0 empty as a background class.
  label_index = 1

  # Construct the list of JPEG files and labels.
  for text in unique_labels:
    jpeg_file_path = '%s/%s/*' % (data_dir, text)
    try:
        matching_files = tf.gfile.Glob(jpeg_file_path)
    except:
        print (jpeg_file_path)
        continue

    labels.extend([label_index] * len(matching_files))
    texts.extend([text] * len(matching_files))
    filenames.extend(matching_files)

    label_index += 1

  # Shuffle the ordering of all image files in order to guarantee
  # random ordering of the images with respect to label in the
  # saved TFRecord files. Make the randomization repeatable.
  shuffled_index = list(range(len(filenames)))
  random.seed(12345)
  random.shuffle(shuffled_index)

  filenames = [filenames[i] for i in shuffled_index]
  texts = [texts[i] for i in shuffled_index]
  labels = [labels[i] for i in shuffled_index]

  print('Found %d JPEG files across %d labels inside %s.' %
        (len(filenames), len(unique_labels), data_dir))
  return filenames, texts, labels


def _process_dataset(name, directory, num_shards, labels_file):
  """Process a complete data set and save it as a TFRecord.

  Args:
    name: string, unique identifier specifying the data set.
    directory: string, root path to the data set.
    num_shards: integer number of shards for this data set.
    labels_file: string, path to the labels file.
  """
  filenames, texts, labels = _find_image_files(directory, labels_file)
  _process_image_files(name, filenames, texts, labels, num_shards)


def main(unused_argv):
  assert not FLAGS.train_shards % FLAGS.num_threads, (
      '在测试集中:线程数量应用建立文件个数想对应')
  assert not FLAGS.validation_shards % FLAGS.num_threads, (
      '在测试集中:线程数量应用建立文件个数想对应')
  print('生成数据文件夹 %s' % FLAGS.output_directory)

  # Run it!
  _process_dataset('train', FLAGS.train_directory,
                   FLAGS.train_shards, FLAGS.labels_file)
"""
  _process_dataset('validation', FLAGS.validation_directory,
                   FLAGS.validation_shards, FLAGS.labels_file)
"""


if __name__ == '__main__':
  tf.app.run()

TFRecord数据的读取:


def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example, features = {
        "image/encoded": tf.FixedLenFeature([], tf.string),
        "image/height": tf.FixedLenFeature([], tf.int64),
        "image/width": tf.FixedLenFeature([], tf.int64),
        "image/filename": tf.FixedLenFeature([], tf.string),
        "image/class/label": tf.FixedLenFeature([], tf.int64),})
    image_encoded = features["image/encoded"]
    image_raw = tf.image.decode_jpeg(image_encoded, channels=3)
    image_object = _image_object()
    image_object.image = tf.image.resize_image_with_crop_or_pad(image_raw, IMAGE_SIZE, IMAGE_SIZE)
    image_object.height = features["image/height"]
    image_object.width = features["image/width"]
    image_object.filename = features["image/filename"]
    image_object.label = tf.cast(features["image/class/label"], tf.int64)
    return image_object

def flower_input(if_random = True, if_training = True):
    if(if_training):
        filenames = [os.path.join(DATA_DIR, "train-0000%d-of-00002.tfrecord" % i) for i in range(0, 2)]
    else:
        filenames = [os.path.join(DATA_DIR, "eval-0000%d-of-00002.tfrecord" % i) for i in range(0, 2)]

    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError("Failed to find file: " + f)
    filename_queue = tf.train.string_input_producer(filenames)
    image_object = read_and_decode(filename_queue)
    image = tf.image.per_image_standardization(image_object.image)
#    image = image_object.image
#    image = tf.image.adjust_gamma(tf.cast(image_object.image, tf.float32), gamma=1, gain=1) # Scale image to (0, 1)
    label = image_object.label
    filename = image_object.filename

    if(if_random):
        min_fraction_of_examples_in_queue = 0.4
        min_queue_examples = int(TRAINING_SET_SIZE * min_fraction_of_examples_in_queue)
        print("Filling queue with %d images before starting to train. " "This will take a few minutes." % min_queue_examples)
        num_preprocess_threads = 1
        image_batch, label_batch, filename_batch = tf.train.shuffle_batch(
            [image, label, filename],
            batch_size = BATCH_SIZE,
            num_threads = num_preprocess_threads,
            capacity = min_queue_examples + 3 * BATCH_SIZE,
            min_after_dequeue = min_queue_examples)
        return image_batch, label_batch, filename_batch
    else:
        image_batch, label_batch, filename_batch = tf.train.batch(
            [image, label, filename],
            batch_size = BATCH_SIZE,
            num_threads = 1)
        return image_batch, label_batch, filename_batch


上一篇下一篇

猜你喜欢

热点阅读