AI人工智能与数学之美

Tensorflow 2.0使用C++ API加载Python

2022-03-11  本文已影响0人  FredricZhu

这里的神经网络比较简单,就是一个 全连接层,输出三个预测值,三个预测值使用soft_max转换成概率分布。
这里主要讲解一下C++ API调用Python Keras训练的模型的过程。
Python 代码如下,

import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

class IrisModel(Model):
    def __init__(self):
        super(IrisModel, self).__init__()
        self.d1 = Dense(3,activation='softmax', kernel_regularizer=tf.keras.regularizers.l2(), name="input_iris")

    def call(self, x):
        y = self.d1(x)
        return y

model = IrisModel()

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=10000, validation_split=0.2, validation_freq=20)
model.summary()
model.save("iris_model")

保存之后会在当前目录下生成一个iris_model目录。这个目录下保存了Tensorflow Keras模型。
注意这里保存自定义的模型,只能使用默认的save_format="tf"格式。不能加h5后缀。

如图所示,


image.png

将此模型目录拷贝到C++工程目录。要求C++和Python侧的Tensorflow最好同版本,我这里都是使用的Tensorflow 2.6.0。


image.png

使用如下Python代码提取iris数据集。

from sklearn import datasets

from pandas import DataFrame

import pandas as pd

# 返回iris 数据集的所有特征
x_data = datasets.load_iris().data
# 返回iris 数据集的所有标签
y_data = datasets.load_iris().target

print("x_data from datasets: \n ", x_data)
print("y_data from datasets: \n", y_data)

# 为表格增加行所有和列标签
x_data = pd.DataFrame(x_data, columns=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度'])

print(x_data.shape)
print(x_data)

# 设置列名对齐
pd.set_option("display.unicode.east_asian_width", True)

print("x_data add index: \n", x_data)

# 新加一列,列标签为类别,数据为 y_data
x_data["类别"] = y_data
print("x_data add a column: \n", x_data)

# 将iris数据集写入文件
x_data.to_csv("../iris.csv", index=True)

将iris数据集转换成hossine DataFrame支持的csv格式,格式如下,

INDEX:150:<ulong>,花萼长度:150:<float>,花萼宽度:150:<float>,花瓣长度:150:<float>,花瓣宽度:150:<float>,类别:150:<int>
1,5.1,3.5,1.4,0.2,0
1,4.9,3.0,1.4,0.2,0
2,4.7,3.2,1.3,0.2,0
3,4.6,3.1,1.5,0.2,0
4,5.0,3.6,1.4,0.2,0
5,5.4,3.9,1.7,0.4,0
6,4.6,3.4,1.4,0.3,0
7,5.0,3.4,1.5,0.2,0
8,4.4,2.9,1.4,0.2,0
9,4.9,3.1,1.5,0.1,0
10,5.4,3.7,1.5,0.2,0
11,4.8,3.4,1.6,0.2,0
12,4.8,3.0,1.4,0.1,0
13,4.3,3.0,1.1,0.1,0
14,5.8,4.0,1.2,0.2,0
15,5.7,4.4,1.5,0.4,0
16,5.4,3.9,1.3,0.4,0
17,5.1,3.5,1.4,0.3,0
18,5.7,3.8,1.7,0.3,0
19,5.1,3.8,1.5,0.3,0
20,5.4,3.4,1.7,0.2,0
21,5.1,3.7,1.5,0.4,0
22,4.6,3.6,1.0,0.2,0
23,5.1,3.3,1.7,0.5,0
24,4.8,3.4,1.9,0.2,0
25,5.0,3.0,1.6,0.2,0
26,5.0,3.4,1.6,0.4,0
27,5.2,3.5,1.5,0.2,0
28,5.2,3.4,1.4,0.2,0
29,4.7,3.2,1.6,0.2,0
30,4.8,3.1,1.6,0.2,0
31,5.4,3.4,1.5,0.4,0
32,5.2,4.1,1.5,0.1,0
33,5.5,4.2,1.4,0.2,0
34,4.9,3.1,1.5,0.2,0
35,5.0,3.2,1.2,0.2,0
36,5.5,3.5,1.3,0.2,0
37,4.9,3.6,1.4,0.1,0
38,4.4,3.0,1.3,0.2,0
39,5.1,3.4,1.5,0.2,0
40,5.0,3.5,1.3,0.3,0
41,4.5,2.3,1.3,0.3,0
42,4.4,3.2,1.3,0.2,0
43,5.0,3.5,1.6,0.6,0
44,5.1,3.8,1.9,0.4,0
45,4.8,3.0,1.4,0.3,0
46,5.1,3.8,1.6,0.2,0
47,4.6,3.2,1.4,0.2,0
48,5.3,3.7,1.5,0.2,0
49,5.0,3.3,1.4,0.2,0
50,7.0,3.2,4.7,1.4,1
51,6.4,3.2,4.5,1.5,1
52,6.9,3.1,4.9,1.5,1
53,5.5,2.3,4.0,1.3,1
54,6.5,2.8,4.6,1.5,1
55,5.7,2.8,4.5,1.3,1
56,6.3,3.3,4.7,1.6,1
57,4.9,2.4,3.3,1.0,1
58,6.6,2.9,4.6,1.3,1
59,5.2,2.7,3.9,1.4,1
60,5.0,2.0,3.5,1.0,1
61,5.9,3.0,4.2,1.5,1
62,6.0,2.2,4.0,1.0,1
63,6.1,2.9,4.7,1.4,1
64,5.6,2.9,3.6,1.3,1
65,6.7,3.1,4.4,1.4,1
66,5.6,3.0,4.5,1.5,1
67,5.8,2.7,4.1,1.0,1
68,6.2,2.2,4.5,1.5,1
69,5.6,2.5,3.9,1.1,1
70,5.9,3.2,4.8,1.8,1
71,6.1,2.8,4.0,1.3,1
72,6.3,2.5,4.9,1.5,1
73,6.1,2.8,4.7,1.2,1
74,6.4,2.9,4.3,1.3,1
75,6.6,3.0,4.4,1.4,1
76,6.8,2.8,4.8,1.4,1
77,6.7,3.0,5.0,1.7,1
78,6.0,2.9,4.5,1.5,1
79,5.7,2.6,3.5,1.0,1
80,5.5,2.4,3.8,1.1,1
81,5.5,2.4,3.7,1.0,1
82,5.8,2.7,3.9,1.2,1
83,6.0,2.7,5.1,1.6,1
84,5.4,3.0,4.5,1.5,1
85,6.0,3.4,4.5,1.6,1
86,6.7,3.1,4.7,1.5,1
87,6.3,2.3,4.4,1.3,1
88,5.6,3.0,4.1,1.3,1
89,5.5,2.5,4.0,1.3,1
90,5.5,2.6,4.4,1.2,1
91,6.1,3.0,4.6,1.4,1
92,5.8,2.6,4.0,1.2,1
93,5.0,2.3,3.3,1.0,1
94,5.6,2.7,4.2,1.3,1
95,5.7,3.0,4.2,1.2,1
96,5.7,2.9,4.2,1.3,1
97,6.2,2.9,4.3,1.3,1
98,5.1,2.5,3.0,1.1,1
99,5.7,2.8,4.1,1.3,1
100,6.3,3.3,6.0,2.5,2
101,5.8,2.7,5.1,1.9,2
102,7.1,3.0,5.9,2.1,2
103,6.3,2.9,5.6,1.8,2
104,6.5,3.0,5.8,2.2,2
105,7.6,3.0,6.6,2.1,2
106,4.9,2.5,4.5,1.7,2
107,7.3,2.9,6.3,1.8,2
108,6.7,2.5,5.8,1.8,2
109,7.2,3.6,6.1,2.5,2
110,6.5,3.2,5.1,2.0,2
111,6.4,2.7,5.3,1.9,2
112,6.8,3.0,5.5,2.1,2
113,5.7,2.5,5.0,2.0,2
114,5.8,2.8,5.1,2.4,2
115,6.4,3.2,5.3,2.3,2
116,6.5,3.0,5.5,1.8,2
117,7.7,3.8,6.7,2.2,2
118,7.7,2.6,6.9,2.3,2
119,6.0,2.2,5.0,1.5,2
120,6.9,3.2,5.7,2.3,2
121,5.6,2.8,4.9,2.0,2
122,7.7,2.8,6.7,2.0,2
123,6.3,2.7,4.9,1.8,2
124,6.7,3.3,5.7,2.1,2
125,7.2,3.2,6.0,1.8,2
126,6.2,2.8,4.8,1.8,2
127,6.1,3.0,4.9,1.8,2
128,6.4,2.8,5.6,2.1,2
129,7.2,3.0,5.8,1.6,2
130,7.4,2.8,6.1,1.9,2
131,7.9,3.8,6.4,2.0,2
132,6.4,2.8,5.6,2.2,2
133,6.3,2.8,5.1,1.5,2
134,6.1,2.6,5.6,1.4,2
135,7.7,3.0,6.1,2.3,2
136,6.3,3.4,5.6,2.4,2
137,6.4,3.1,5.5,1.8,2
138,6.0,3.0,4.8,1.8,2
139,6.9,3.1,5.4,2.1,2
140,6.7,3.1,5.6,2.4,2
141,6.9,3.1,5.1,2.3,2
142,5.8,2.7,5.1,1.9,2
143,6.8,3.2,5.9,2.3,2
144,6.7,3.3,5.7,2.5,2
145,6.7,3.0,5.2,2.3,2
146,6.3,2.5,5.0,1.9,2
147,6.5,3.0,5.2,2.0,2
148,6.2,3.4,5.4,2.3,2
149,5.9,3.0,5.1,1.8,2

编写如下C++代码,用于加载Keras模型并做预测,

CMakeLists.txt

cmake_minimum_required(VERSION 3.3)


project(test_tf_predict)

set(CMAKE_CXX_STANDARD 17)
add_definitions(-g)

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup()

set(INCLUDE_DIRS ${CMAKE_CURRENT_SOURCE_DIR}/../../include)
include_directories(${INCLUDE_DIRS})

find_package(TensorflowCC REQUIRED)

file( GLOB test_file_list ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp) 

file( GLOB APP_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/../../include/tf_/impl/tensor_testutil.cc ${CMAKE_CURRENT_SOURCE_DIR}/../../include/death_handler/impl/*.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../../include/df/impl/*.cpp)

add_library(${PROJECT_NAME}_lib SHARED ${APP_SOURCES})
target_link_libraries(${PROJECT_NAME}_lib PUBLIC ${CONAN_LIBS} TensorflowCC::TensorflowCC)

foreach( test_file ${test_file_list} )
    file(RELATIVE_PATH filename ${CMAKE_CURRENT_SOURCE_DIR} ${test_file})
    string(REPLACE ".cpp" "" file ${filename})
    add_executable(${file}  ${test_file})
    target_link_libraries(${file} PUBLIC ${PROJECT_NAME}_lib)
endforeach( test_file ${test_file_list})

tf_/tensor_testutil.h

/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_CORE_FRAMEWORK_TENSOR_TESTUTIL_H_
#define TENSORFLOW_CORE_FRAMEWORK_TENSOR_TESTUTIL_H_

#include <numeric>
#include <limits>
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/test.h"
#include <iostream>

namespace tensorflow {
namespace test {

// Constructs a scalar tensor with 'val'.
template <typename T>
Tensor AsScalar(const T& val) {
  Tensor ret(DataTypeToEnum<T>::value, {});
  ret.scalar<T>()() = val;
  return ret;
}

// Constructs a flat tensor with 'vals'.
template <typename T>
Tensor AsTensor(gtl::ArraySlice<T> vals) {
  Tensor ret(DataTypeToEnum<T>::value, {static_cast<int64>(vals.size())});
  std::copy_n(vals.data(), vals.size(), ret.flat<T>().data());
  return ret;
}

template <typename T>
std::ostream& PrintTensorValue(std::ostream& os, Tensor const& tensor) {
   // 打印Tensor值
    T const* tensor_pt = tensor.unaligned_flat<T>().data();
    auto size = tensor.NumElements();
    os << std::setprecision(std::numeric_limits<long double>::digits10 + 1);
    for(decltype(size) i=0; i<size; ++i) {
        os << tensor_pt[i] << "\n";
    }
    return os;
}

template <typename T>
std::ostream& PrintTensorValue(std::ostream& os, Tensor const& tensor, int per_line_count) {
   // 打印Tensor值
    T const* tensor_pt = tensor.unaligned_flat<T>().data();
    auto size = tensor.NumElements();
    os << std::setprecision(std::numeric_limits<long double>::digits10 + 1);
    for(decltype(size) i=0; i<size; ++i) {
        if(i!=0 && (i+1)%per_line_count == 0) {
          os << tensor_pt[i] << "\n";
        }else {
          os << tensor_pt[i] << "\t";
        }
    }
    return os;
}

template <typename T>
std::vector<T> GetTensorValue( Tensor const& tensor) {
   // 获取tensor的值
    std::vector<T> res;
    T const* tensor_pt = tensor.unaligned_flat<T>().data();
    auto size = tensor.NumElements();
    for(decltype(size) i=0; i<size; ++i) {
        res.emplace_back(tensor_pt[i]);
    }
    return res;
}

template <typename OpType>
std::vector<Output> CreateReduceOP(Scope const& s, DataType tf_type, PartialTensorShape const& shape, bool keep_dims) {
  std::vector<Output> outputs{};
  auto input = ops::Placeholder(s.WithOpName("input"), tf_type, ops::Placeholder::Shape(shape));
  auto axis = ops::Placeholder(s.WithOpName("axis"), DT_INT32);
  typename OpType::Attrs op_attrs;
  op_attrs.keep_dims_ = keep_dims;
  auto op = OpType(s.WithOpName("my_reduce"), input, axis, op_attrs);
  outputs.emplace_back(std::move(input));
  outputs.emplace_back(std::move(axis));
  outputs.emplace_back(std::move(op));
  return outputs;
}

// Constructs a tensor of "shape" with values "vals".
template <typename T>
Tensor AsTensor(gtl::ArraySlice<T> vals, const TensorShape& shape) {
  Tensor ret;
  CHECK(ret.CopyFrom(AsTensor(vals), shape));
  return ret;
}

// Fills in '*tensor' with 'vals'. E.g.,
//   Tensor x(&alloc, DT_FLOAT, TensorShape({2, 2}));
//   test::FillValues<float>(&x, {11, 21, 21, 22});
template <typename T>
void FillValues(Tensor* tensor, gtl::ArraySlice<T> vals) {
  auto flat = tensor->flat<T>();
  CHECK_EQ(flat.size(), vals.size());
  if (flat.size() > 0) {
    std::copy_n(vals.data(), vals.size(), flat.data());
  }
}

// Fills in '*tensor' with 'vals', converting the types as needed.
template <typename T, typename SrcType>
void FillValues(Tensor* tensor, std::initializer_list<SrcType> vals) {
  auto flat = tensor->flat<T>();
  CHECK_EQ(flat.size(), vals.size());
  if (flat.size() > 0) {
    size_t i = 0;
    for (auto itr = vals.begin(); itr != vals.end(); ++itr, ++i) {
      flat(i) = T(*itr);
    }
  }
}

// Fills in '*tensor' with a sequence of value of val, val+1, val+2, ...
//   Tensor x(&alloc, DT_FLOAT, TensorShape({2, 2}));
//   test::FillIota<float>(&x, 1.0);
template <typename T>
void FillIota(Tensor* tensor, const T& val) {
  auto flat = tensor->flat<T>();
  std::iota(flat.data(), flat.data() + flat.size(), val);
}

// Fills in '*tensor' with a sequence of value of fn(0), fn(1), ...
//   Tensor x(&alloc, DT_FLOAT, TensorShape({2, 2}));
//   test::FillFn<float>(&x, [](int i)->float { return i*i; });
template <typename T>
void FillFn(Tensor* tensor, std::function<T(int)> fn) {
  auto flat = tensor->flat<T>();
  for (int i = 0; i < flat.size(); ++i) flat(i) = fn(i);
}

// Expects "x" and "y" are tensors of the same type, same shape, and identical
// values (within 4 ULPs for floating point types unless explicitly disabled).
enum class Tolerance {
  kNone,
  kDefault,
};
void ExpectEqual(const Tensor& x, const Tensor& y,
                 Tolerance t = Tolerance ::kDefault);

// Expects "x" and "y" are tensors of the same (floating point) type,
// same shape and element-wise difference between x and y is no more
// than atol + rtol * abs(x). If atol or rtol is negative, the data type's
// epsilon * kSlackFactor is used.
void ExpectClose(const Tensor& x, const Tensor& y, double atol = -1.0,
                 double rtol = -1.0);

// Expects "x" and "y" are tensors of the same type T, same shape, and
// equal values. Consider using ExpectEqual above instead.
template <typename T>
void ExpectTensorEqual(const Tensor& x, const Tensor& y) {
  EXPECT_EQ(x.dtype(), DataTypeToEnum<T>::value);
  ExpectEqual(x, y);
}

// Expects "x" and "y" are tensors of the same type T, same shape, and
// approximate equal values. Consider using ExpectClose above instead.
template <typename T>
void ExpectTensorNear(const Tensor& x, const Tensor& y, double atol) {
  EXPECT_EQ(x.dtype(), DataTypeToEnum<T>::value);
  ExpectClose(x, y, atol, /*rtol=*/0.0);
}

// For tensor_testutil_test only.
namespace internal_test {
::testing::AssertionResult IsClose(Eigen::half x, Eigen::half y,
                                   double atol = -1.0, double rtol = -1.0);
::testing::AssertionResult IsClose(float x, float y, double atol = -1.0,
                                   double rtol = -1.0);
::testing::AssertionResult IsClose(double x, double y, double atol = -1.0,
                                   double rtol = -1.0);
}  // namespace internal_test

}  // namespace test
}  // namespace tensorflow

#endif  // TENSORFLOW_CORE_FRAMEWORK_TENSOR_TESTUTIL_H_

tf_/impl/tensor_testutil.cc

/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tf_/tensor_testutil.h"

#include <cmath>

#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/platform/types.h"

namespace tensorflow {
namespace test {

static ::testing::AssertionResult IsSameType(const Tensor& x, const Tensor& y) {
  if (x.dtype() != y.dtype()) {
    return ::testing::AssertionFailure()
           << "Tensors have different dtypes (" << x.dtype() << " vs "
           << y.dtype() << ")";
  }
  return ::testing::AssertionSuccess();
}

static ::testing::AssertionResult IsSameShape(const Tensor& x,
                                              const Tensor& y) {
  if (!x.IsSameSize(y)) {
    return ::testing::AssertionFailure()
           << "Tensors have different shapes (" << x.shape().DebugString()
           << " vs " << y.shape().DebugString() << ")";
  }
  return ::testing::AssertionSuccess();
}

template <typename T>
static ::testing::AssertionResult EqualFailure(const T& x, const T& y) {
  return ::testing::AssertionFailure()
         << std::setprecision(std::numeric_limits<T>::digits10 + 2) << x
         << " not equal to " << y;
}
static ::testing::AssertionResult IsEqual(float x, float y, Tolerance t) {
  // We consider NaNs equal for testing.
  if (Eigen::numext::isnan(x) && Eigen::numext::isnan(y))
    return ::testing::AssertionSuccess();
  if (t == Tolerance::kNone) {
    if (x == y) return ::testing::AssertionSuccess();
  } else {
    if (::testing::internal::CmpHelperFloatingPointEQ<float>("", "", x, y))
      return ::testing::AssertionSuccess();
  }
  return EqualFailure(x, y);
}
static ::testing::AssertionResult IsEqual(double x, double y, Tolerance t) {
  // We consider NaNs equal for testing.
  if (Eigen::numext::isnan(x) && Eigen::numext::isnan(y))
    return ::testing::AssertionSuccess();
  if (t == Tolerance::kNone) {
    if (x == y) return ::testing::AssertionSuccess();
  } else {
    if (::testing::internal::CmpHelperFloatingPointEQ<double>("", "", x, y))
      return ::testing::AssertionSuccess();
  }
  return EqualFailure(x, y);
}
static ::testing::AssertionResult IsEqual(Eigen::half x, Eigen::half y,
                                          Tolerance t) {
  // We consider NaNs equal for testing.
  if (Eigen::numext::isnan(x) && Eigen::numext::isnan(y))
    return ::testing::AssertionSuccess();

  // Below is a reimplementation of CmpHelperFloatingPointEQ<Eigen::half>, which
  // we cannot use because Eigen::half is not default-constructible.

  if (Eigen::numext::isnan(x) || Eigen::numext::isnan(y))
    return EqualFailure(x, y);

  auto sign_and_magnitude_to_biased = [](uint16_t sam) {
    const uint16_t kSignBitMask = 0x8000;
    if (kSignBitMask & sam) return ~sam + 1;  // negative number.
    return kSignBitMask | sam;                // positive number.
  };

  auto xb = sign_and_magnitude_to_biased(Eigen::numext::bit_cast<uint16_t>(x));
  auto yb = sign_and_magnitude_to_biased(Eigen::numext::bit_cast<uint16_t>(y));
  if (t == Tolerance::kNone) {
    if (xb == yb) return ::testing::AssertionSuccess();
  } else {
    auto distance = xb >= yb ? xb - yb : yb - xb;
    const uint16_t kMaxUlps = 4;
    if (distance <= kMaxUlps) return ::testing::AssertionSuccess();
  }
  return EqualFailure(x, y);
}
template <typename T>
static ::testing::AssertionResult IsEqual(const T& x, const T& y, Tolerance t) {
  if (::testing::internal::CmpHelperEQ<T>("", "", x, y))
    return ::testing::AssertionSuccess();
  return EqualFailure(x, y);
}
template <typename T>
static ::testing::AssertionResult IsEqual(const std::complex<T>& x,
                                          const std::complex<T>& y,
                                          Tolerance t) {
  if (IsEqual(x.real(), y.real(), t) && IsEqual(x.imag(), y.imag(), t))
    return ::testing::AssertionSuccess();
  return EqualFailure(x, y);
}

template <typename T>
static void ExpectEqual(const Tensor& x, const Tensor& y,
                        Tolerance t = Tolerance::kDefault) {
  const T* Tx = x.unaligned_flat<T>().data();
  const T* Ty = y.unaligned_flat<T>().data();
  auto size = x.NumElements();
  int max_failures = 10;
  int num_failures = 0;
  for (decltype(size) i = 0; i < size; ++i) {
    EXPECT_TRUE(IsEqual(Tx[i], Ty[i], t)) << "i = " << (++num_failures, i);
    ASSERT_LT(num_failures, max_failures) << "Too many mismatches, giving up.";
  }
}

template <typename T>
static ::testing::AssertionResult IsClose(const T& x, const T& y, const T& atol,
                                          const T& rtol) {
  // We consider NaNs equal for testing.
  if (Eigen::numext::isnan(x) && Eigen::numext::isnan(y))
    return ::testing::AssertionSuccess();
  if (x == y) return ::testing::AssertionSuccess();  // Handle infinity.
  auto tolerance = atol + rtol * Eigen::numext::abs(x);
  if (Eigen::numext::abs(x - y) <= tolerance)
    return ::testing::AssertionSuccess();
  return ::testing::AssertionFailure() << x << " not close to " << y;
}

template <typename T>
static ::testing::AssertionResult IsClose(const std::complex<T>& x,
                                          const std::complex<T>& y,
                                          const T& atol, const T& rtol) {
  if (IsClose(x.real(), y.real(), atol, rtol) &&
      IsClose(x.imag(), y.imag(), atol, rtol))
    return ::testing::AssertionSuccess();
  return ::testing::AssertionFailure() << x << " not close to " << y;
}

// Return type can be different from T, e.g. float for T=std::complex<float>.
template <typename T>
static auto GetTolerance(double tolerance) {
  using Real = typename Eigen::NumTraits<T>::Real;
  auto default_tol = static_cast<Real>(5.0) * Eigen::NumTraits<T>::epsilon();
  auto result = tolerance < 0.0 ? default_tol : static_cast<Real>(tolerance);
  EXPECT_GE(result, static_cast<Real>(0));
  return result;
}

template <typename T>
static void ExpectClose(const Tensor& x, const Tensor& y, double atol,
                        double rtol) {
  auto typed_atol = GetTolerance<T>(atol);
  auto typed_rtol = GetTolerance<T>(rtol);

  const T* Tx = x.unaligned_flat<T>().data();
  const T* Ty = y.unaligned_flat<T>().data();
  auto size = x.NumElements();
  int max_failures = 10;
  int num_failures = 0;
  for (decltype(size) i = 0; i < size; ++i) {
    EXPECT_TRUE(IsClose(Tx[i], Ty[i], typed_atol, typed_rtol))
        << "i = " << (++num_failures, i) << " Tx[i] = " << Tx[i]
        << " Ty[i] = " << Ty[i];
    ASSERT_LT(num_failures, max_failures)
        << "Too many mismatches (atol = " << atol << " rtol = " << rtol
        << "), giving up.";
  }
  EXPECT_EQ(num_failures, 0)
      << "Mismatches detected (atol = " << atol << " rtol = " << rtol << ").";
}

void ExpectEqual(const Tensor& x, const Tensor& y, Tolerance t) {
  ASSERT_TRUE(IsSameType(x, y));
  ASSERT_TRUE(IsSameShape(x, y));

  switch (x.dtype()) {
    case DT_FLOAT:
      return ExpectEqual<float>(x, y, t);
    case DT_DOUBLE:
      return ExpectEqual<double>(x, y, t);
    case DT_INT32:
      return ExpectEqual<int32>(x, y);
    case DT_UINT32:
      return ExpectEqual<uint32>(x, y);
    case DT_UINT16:
      return ExpectEqual<uint16>(x, y);
    case DT_UINT8:
      return ExpectEqual<uint8>(x, y);
    case DT_INT16:
      return ExpectEqual<int16>(x, y);
    case DT_INT8:
      return ExpectEqual<int8>(x, y);
    case DT_STRING:
      return ExpectEqual<tstring>(x, y);
    case DT_COMPLEX64:
      return ExpectEqual<complex64>(x, y, t);
    case DT_COMPLEX128:
      return ExpectEqual<complex128>(x, y, t);
    case DT_INT64:
      return ExpectEqual<int64>(x, y);
    case DT_UINT64:
      return ExpectEqual<uint64>(x, y);
    case DT_BOOL:
      return ExpectEqual<bool>(x, y);
    case DT_QINT8:
      return ExpectEqual<qint8>(x, y);
    case DT_QUINT8:
      return ExpectEqual<quint8>(x, y);
    case DT_QINT16:
      return ExpectEqual<qint16>(x, y);
    case DT_QUINT16:
      return ExpectEqual<quint16>(x, y);
    case DT_QINT32:
      return ExpectEqual<qint32>(x, y);
    case DT_BFLOAT16:
      return ExpectEqual<bfloat16>(x, y, t);
    case DT_HALF:
      return ExpectEqual<Eigen::half>(x, y, t);
    default:
      EXPECT_TRUE(false) << "Unsupported type : " << DataTypeString(x.dtype());
  }
}

void ExpectClose(const Tensor& x, const Tensor& y, double atol, double rtol) {
  ASSERT_TRUE(IsSameType(x, y));
  ASSERT_TRUE(IsSameShape(x, y));

  switch (x.dtype()) {
    case DT_HALF:
      return ExpectClose<Eigen::half>(x, y, atol, rtol);
    case DT_BFLOAT16:
      return ExpectClose<Eigen::bfloat16>(x, y, atol, rtol);
    case DT_FLOAT:
      return ExpectClose<float>(x, y, atol, rtol);
    case DT_DOUBLE:
      return ExpectClose<double>(x, y, atol, rtol);
    case DT_COMPLEX64:
      return ExpectClose<complex64>(x, y, atol, rtol);
    case DT_COMPLEX128:
      return ExpectClose<complex128>(x, y, atol, rtol);
    default:
      EXPECT_TRUE(false) << "Unsupported type : " << DataTypeString(x.dtype());
  }
}

::testing::AssertionResult internal_test::IsClose(Eigen::half x, Eigen::half y,
                                                  double atol, double rtol) {
  return test::IsClose(x, y, GetTolerance<Eigen::half>(atol),
                       GetTolerance<Eigen::half>(rtol));
}
::testing::AssertionResult internal_test::IsClose(float x, float y, double atol,
                                                  double rtol) {
  return test::IsClose(x, y, GetTolerance<float>(atol),
                       GetTolerance<float>(rtol));
}
::testing::AssertionResult internal_test::IsClose(double x, double y,
                                                  double atol, double rtol) {
  return test::IsClose(x, y, GetTolerance<double>(atol),
                       GetTolerance<double>(rtol));
}

}  // end namespace test
}  // end namespace tensorflow

tf_iris_model_test.cpp

#include <tensorflow/c/c_api.h>

#include "death_handler/death_handler.h"

#include "tensorflow/cc/saved_model/constants.h"
#include "tensorflow/cc/saved_model/loader.h"
#include "tensorflow/cc/saved_model/signature_constants.h"
#include "tensorflow/cc/saved_model/tag_constants.h"

#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"

#include <vector>
#include "tensorflow/core/public/session.h"
#include "tensorflow/cc/ops/const_op.h"
#include "tf_/tensor_testutil.h"
#include "tensorflow/core/framework/node_def_util.h"
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/platform/test.h"
#include "df/df.h"

using namespace tensorflow;

using BatchDef = std::initializer_list<tensorflow::int64>;
char const* data_csv = "../data/iris.csv";

int main(int argc, char** argv) {
    Debug::DeathHandler dh;

    ::testing::InitGoogleTest(&argc, argv);
    int ret = RUN_ALL_TESTS();
    return ret;
}

std::vector<float> GetInputBatches() {
    CLDataFrame df;
    df.read(data_csv, hmdf::io_format::csv2, false);
    auto huae_length_vec = df.get_column<float>("花萼长度");
    auto huae_width_vec = df.get_column<float>("花萼宽度");
    auto huab_length_vec = df.get_column<float>("花瓣长度");
    auto huab_width_vec = df.get_column<float>("花瓣宽度");

    std::vector<float> res{};
    res.reserve(4 * huae_length_vec.size());
    for(std::size_t i=0; i<huae_length_vec.size(); ++i) {
        res.emplace_back(huae_length_vec[i]);
        res.emplace_back(huae_width_vec[i]);
        res.emplace_back(huab_length_vec[i]);
        res.emplace_back(huab_width_vec[i]);
    }
    return res;
}

std::vector<int> GetOutputBatches() {
    CLDataFrame df;
    df.read(data_csv, hmdf::io_format::csv2, false);
    auto labels = df.get_column<int>("类别");
    return labels;
}

std::vector<int> ConvertTensorToIndexValue(Tensor const& tensor_) {
    auto tensor_res = test::GetTensorValue<float>(tensor_);
    std::vector<int> predict_res{};

    for(int i=0; i<tensor_res.size(); ++i) {
        if(i!=0 && (i+1)%3==0) {
            auto value0 = tensor_res[i-2];
            auto value1 = tensor_res[i-1];
            auto value2 = tensor_res[i];
            auto max_value = std::max({value0, value1, value2});
            if(value0 == max_value) {
                predict_res.emplace_back(0);
            } else if(value1 == max_value) {
                predict_res.emplace_back(1);
            } else if(value2 == max_value) {
                predict_res.emplace_back(2);
            }
        }    
    }
    return predict_res;
}

Tensor MakeTensor(std::vector<float> const& batch, BatchDef const& batch_def) {
    Tensor t(DT_FLOAT,
        TensorShape(batch_def));
    for (int i = 0; i < batch.size(); ++i) {
      t.flat<float>()(i) = batch[i];
    }
    return t;
}

TEST(TfIrisModelTest, LoadAndPredict) {
    SavedModelBundleLite bundle;
    SessionOptions session_options;
    RunOptions run_options;

    const string export_dir = "../iris_model";
    TF_CHECK_OK(LoadSavedModel(session_options, run_options, export_dir,
                              {kSavedModelTagServe}, &bundle));
    
    auto input_batches = GetInputBatches();
    auto input_tensor = MakeTensor(input_batches, {150, 4});
    
    std::vector<tensorflow::Tensor> out_tensors;
    TF_CHECK_OK(bundle.GetSession()->Run({{"serving_default_input_1:0", input_tensor}},
    {"StatefulPartitionedCall:0"}, {}, &out_tensors)); 

    std::cout << "Print Tensor Value\n";
    test::PrintTensorValue<float>(std::cout, out_tensors[0], 3);
    std::cout << "\n";

    std::cout << "Print Index Value\n";
    auto predict_res = ConvertTensorToIndexValue(out_tensors[0]);
    for(auto ele: predict_res) {
        std::cout << ele << "\n";
    }

    auto labels = GetOutputBatches();
    int correct {0};
    for(int i=0; i<predict_res.size(); ++i) {
        if(predict_res[i] == labels[i]) {
            ++ correct;
        }
    }
    
    std::cout << "Total correct: " << correct << "\n";
    std::cout << "Total datasets: " << labels.size() << "\n"; 
    std::cout << "Accuracy is: " << (float)(correct)/labels.size() << "\n";
}

其中输入输出变量可以使用如下命令获取,隐藏层的节点不用关心,

# <yourenv>/bin/saved_model_cli
saved_model_cli show --dir "$1" --tag_set serve --signature_def serving_default

程序输出如下,


image.png
上一篇下一篇

猜你喜欢

热点阅读