大数据,机器学习,人工智能Python大讲堂机器学习与数据挖掘

【11%】100小时机器学习——KNN实验

2018-12-05  本文已影响5人  QuantumCC

总目录链接

前言

本节进行knn算法的实验部分。
前情回顾: K近邻法(K-NN,k-NearestNeighbor)

Step 0:数据准备

Social_Networt_Ads

User ID,Gender,Age,EstimatedSalary,Purchased
15624510,Male,19,19000,0
15810944,Male,35,20000,0
15668575,Female,26,43000,0
15603246,Female,27,57000,0
15804002,Male,19,76000,0
15728773,Male,27,58000,0
15598044,Female,27,84000,0
15694829,Female,32,150000,1
15600575,Male,25,33000,0
15727311,Female,35,65000,0
... ...

Step 1:数据集处理

导入相关库

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

导入数据集

dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

划分训练集和测试集

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

特征缩放

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

Step2:训练预测

使用K-NN对训练集数据进行训练

from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)

对测试集进行预测

y_pred = classifier.predict(X_test)

生成混淆矩阵

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
上一篇 下一篇

猜你喜欢

热点阅读