生信星球培训第八十六期

2020-10-29 .的Day6学习笔记

2020-10-31  本文已影响0人  808bass0923

1.配置Rstudio的下载镜像

在Rstudio的程序设置
不推荐

** 推荐方法1 options函数就是设置R运行过程中的一些选项设置**

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源
# 当然可以换成其他地区的镜像

高级模式(推荐)

R的配置文件 .Rprofile

1.file.edit('~/.Rprofile')
2.在打开的edit中输入

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")

最后保存=》重启Rstudio,这时你再运行一下:options()repos和options()BioC_mirror 就发现已经配置好了,就很方便地省了手动运行的步骤.

2.安装

install.packages(“包”)或者BiocManager::install(“包”)
取决于你要安装的包存在于CRAN网站还是Biocductor

3.加载

都可用
library(包)
require(包)

采用数据test <- iris[c(1:2,51:52,101:102),]

dplyr五个基础函数

1.mutate(),新增列

mutate(test, new = Sepal.Length * Sepal.Width)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species  * new*
## 1          5.1         3.5          1.4         0.2     setosa 17.85
## 2          4.9         3.0          1.4         0.2     setosa 14.70
## 3          7.0         3.2          4.7         1.4 versicolor 22.40
## 4          6.4         3.2          4.5         1.5 versicolor 20.48
## 5          6.3         3.3          6.0         2.5  virginica 20.79
## 6          5.8         2.7          5.1         1.9  virginica 15.66

2.2.select(),按列筛选

select(test,c(1,5))
##     Sepal.Length    Species
## 1            5.1     setosa
## 2            4.9     setosa
## 51           7.0 versicolor
## 52           6.4 versicolor
## 101          6.3  virginica
## 102          5.8  virginica

select(test, Petal.Length, Petal.Width)
##     Petal.Length Petal.Width
## 1            1.4         0.2
## 2            1.4         0.2
## 51           4.7         1.4
## 52           4.5         1.5
## 101          6.0         2.5
## 102          5.1         1.9
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
##     Petal.Length Petal.Width
## 1            1.4         0.2
## 2            1.4         0.2
## 51           4.7         1.4
## 52           4.5         1.5
## 101          6.0         2.5
## 102          5.1         1.9

3.filter()筛选行

filter(test, Species %in% c("setosa","versicolor"))
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1          5.1         3.5          1.4         0.2     setosa
## 2          4.9         3.0          1.4         0.2     setosa
## 3          7.0         3.2          4.7         1.4 versicolor
## 4          6.4         3.2          4.5         1.5 versicolor

4.arrange(),按某1列或某几列对整个表格进行排序

arrange(test, Sepal.Length)#默认从小到大排序
arrange(test, desc(Sepal.Length))#用desc从大到小

5.summarise():汇总

# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
## # A tibble: 6 x 5
## # Groups:   Species [3]
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
## *        <dbl>       <dbl>        <dbl>       <dbl> <fct>     
## 1          5.1         3.5          1.4         0.2 setosa    
## 2          4.9         3            1.4         0.2 setosa    
## 3          7           3.2          4.7         1.4 versicolor
## 4          6.4         3.2          4.5         1.5 versicolor
## 5          6.3         3.3          6           2.5 virginica 
## 6          5.8         2.7          5.1         1.9 virginica
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
##   Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
##   
## 1 setosa                     5                 0.141
## 2 versicolor                 6.7               0.424
## 3 virginica                  6.05              0.354

1:管道操作 %>% (cmd/ctr + shift + M)

(加载任意一个tidyverse包即可用管道符号)

test %>% group_by(Species) %>% summarise(mean(Sepal.Length), sd(Sepal.Length))

2:count统计某列的unique值

count(test,Species)
## # A tibble: 3 x 2
##   Species        n
##   
## 1 setosa         2
## 2 versicolor     2
## 3 virginica      2

1.內连inner_join,取交集

inner_join(test1, test2, by = "x")

2.左连left_join

left_join(test1, test2, by = 'x')

3.全连full_join

full_join( test1, test2, by = 'x')

4.半连接:返回能够与y表匹配的x表所有记录semi_join

semi_join(x = test1, y = test2, by = 'x')

5.反连接:返回无法与y表匹配的x表的所记录anti_join

anti_join(x = test2, y = test1, by = 'x')

6.简单合并

在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数

bind_rows(test1, test2)
bind_cols(test1, test3)
上一篇下一篇

猜你喜欢

热点阅读