2020-10-29 .的Day6学习笔记
2020-10-31 本文已影响0人
808bass0923
1.配置Rstudio的下载镜像
在Rstudio的程序设置
不推荐
** 推荐方法1 options函数就是设置R运行过程中的一些选项设置**
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源
# 当然可以换成其他地区的镜像
高级模式(推荐)
R的配置文件 .Rprofile
1.file.edit('~/.Rprofile')
2.在打开的edit中输入
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
最后保存=》重启Rstudio,这时你再运行一下:options()BioC_mirror 就发现已经配置好了,就很方便地省了手动运行的步骤.
2.安装
install.packages(“包”)或者BiocManager::install(“包”)
取决于你要安装的包存在于CRAN网站还是Biocductor
3.加载
都可用
library(包)
require(包)
采用数据test <- iris[c(1:2,51:52,101:102),]
dplyr五个基础函数
1.mutate(),新增列
mutate(test, new = Sepal.Length * Sepal.Width)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species * new*
## 1 5.1 3.5 1.4 0.2 setosa 17.85
## 2 4.9 3.0 1.4 0.2 setosa 14.70
## 3 7.0 3.2 4.7 1.4 versicolor 22.40
## 4 6.4 3.2 4.5 1.5 versicolor 20.48
## 5 6.3 3.3 6.0 2.5 virginica 20.79
## 6 5.8 2.7 5.1 1.9 virginica 15.66
2.2.select(),按列筛选
select(test,c(1,5))
## Sepal.Length Species
## 1 5.1 setosa
## 2 4.9 setosa
## 51 7.0 versicolor
## 52 6.4 versicolor
## 101 6.3 virginica
## 102 5.8 virginica
select(test, Petal.Length, Petal.Width)
## Petal.Length Petal.Width
## 1 1.4 0.2
## 2 1.4 0.2
## 51 4.7 1.4
## 52 4.5 1.5
## 101 6.0 2.5
## 102 5.1 1.9
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
## Petal.Length Petal.Width
## 1 1.4 0.2
## 2 1.4 0.2
## 51 4.7 1.4
## 52 4.5 1.5
## 101 6.0 2.5
## 102 5.1 1.9
3.filter()筛选行
filter(test, Species %in% c("setosa","versicolor"))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 7.0 3.2 4.7 1.4 versicolor
## 4 6.4 3.2 4.5 1.5 versicolor
4.arrange(),按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)#默认从小到大排序
arrange(test, desc(Sepal.Length))#用desc从大到小
5.summarise():汇总
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
## # A tibble: 6 x 5
## # Groups: Species [3]
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## * <dbl> <dbl> <dbl> <dbl> <fct>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 7 3.2 4.7 1.4 versicolor
## 4 6.4 3.2 4.5 1.5 versicolor
## 5 6.3 3.3 6 2.5 virginica
## 6 5.8 2.7 5.1 1.9 virginica
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
## Species `mean(Sepal.Length)` `sd(Sepal.Length)`
##
## 1 setosa 5 0.141
## 2 versicolor 6.7 0.424
## 3 virginica 6.05 0.354
1:管道操作 %>% (cmd/ctr + shift + M)
(加载任意一个tidyverse包即可用管道符号)
test %>% group_by(Species) %>% summarise(mean(Sepal.Length), sd(Sepal.Length))
2:count统计某列的unique值
count(test,Species)
## # A tibble: 3 x 2
## Species n
##
## 1 setosa 2
## 2 versicolor 2
## 3 virginica 2
1.內连inner_join,取交集
inner_join(test1, test2, by = "x")
2.左连left_join
left_join(test1, test2, by = 'x')
3.全连full_join
full_join( test1, test2, by = 'x')
4.半连接:返回能够与y表匹配的x表所有记录semi_join
semi_join(x = test1, y = test2, by = 'x')
5.反连接:返回无法与y表匹配的x表的所记录anti_join
anti_join(x = test2, y = test1, by = 'x')
6.简单合并
在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数
bind_rows(test1, test2)
bind_cols(test1, test3)