数据分析数据产品用户体验

用户行为分析,就该这么做!

2021-05-25  本文已影响0人  小边_leo

一、用户行为分析的常见错误

1. 错误1:乱摆指标,一锅乱炖

最典型的就是,把性别、年龄、职业、身高体重,这种用户基础信息往上摆。注意,用户行为要分析的是行为不是基础信息,无关指标太多只会干扰视线,乱上加乱。

2. 错误2:罗列数据,没有判断

最典型的就是,罗列了用户登录数、点击数、页面跳转一大堆数据,到底说明啥问题?

——没结论。这种东西根本不能被称作“分析”,只算是基础数据展示。既然是分析就要有结论,有问题,有解答。

3. 错误3:望文生义,乱下结论

最常见的:

基本上就是数据低了就搞高,高了就保持。其结论之无脑,业务部门都看哭了……

以上种种乱象,主要来自:对不同部门关注的用户行为重点缺乏了解。不知道重点,就可劲拼凑数据,忽视了如何从数据提炼结论,结果反而画蛇添足。想破局,就得从认真思考:到底业务看用户行为能看出啥?

二、用户行为是什么

一个用户ID,在企业内部系统产生的,可记录的动作,都可以称为:用户行为。一个完整的用户行为,包括6要素:

  1. 时间:何时发生
  2. 地点:在XX渠道/平台/系统发生
  3. 人物:谁发生的
  4. 起因:第一个动作
  5. 经过:所有动作组成的链路
  6. 结果:行为带来的结果

这些要素,在不同平台上表现方式不同,如下图:

用户行为分析,就该这么做!

在不同系统平台,收集的用户行为的方式也不同,常见的有三类:

  1. 后台记录:用户注册表单、服务请求表单、交易订单等;
  2. 埋点记录:用户在APP、小程序、H5浏览记录;
  3. 业务人员反馈:通过销售、客服、售后工作人员反馈的信息。

总之,这也是为啥用户行为相关指标数据显得很多、很杂、很乱的原因:本来用户行为就有很多种,不结合具体业务需求,就是讲不清楚。

三、不同业务的需求

业务方关注用户行为,有四种情况:

1. 情况一:一无所知,看看再说

常见的,比如:

总之,对基础情况不甚了解。这种情况下,宜粗不宜细,宜全不宜精。先给一个整体概貌,让领导/业务同事找找感觉,之后有具体议题了,再深入分析(如下图)。不然一上来鸡毛蒜皮一堆东西,很有可能把人看晕,感慨“这一大堆到底说了啥?”

用户行为分析,就该这么做!

2. 情况二:心有所指,关注结果

这种情况,一般出在某个具体业务流程、产品功能点、内容发布以后。业务方目标很明确:看看这东西做的咋样了。

常见的,比如:

此时就不能铺开了说,而是聚焦业务关注的功能点,从大到小展示数据,如下图:

用户行为分析,就该这么做!

注意!用户行为分析低一个大坑点,就是:用户行为多不等于业绩好。比如电商业务,运营兴致勃勃的上个一浇水种树领优惠的活动,企图拉一拉活跃人数,结果发现用户都玩游戏去了,都在等优惠,反而下单的人在减少!

此时,可以用矩阵法、前后对比法、行为关系分析等方法,具体看这个行为对业绩的影响(如下图)。

3. 情况三:业绩压力,焦头烂额

这种情况,一般是评价具体业务流程,且该流程是核心流程。比如新用户注册,大型活动参与,交易流程,关键问题投诉等等。

这时候分析目标非常具体:

这种目标清晰的用户行为分析,可以说是最简单轻松了。核心思路就是以下四个模块。

用户行为分析,就该这么做!

这里要注意的是,很多同学会直接插入转化流程分析。这样做呈现的数据太细,容易模糊整体判断。好/坏的判断始终是第一位的。如果连“好”“坏”都判断错了,那后边的原因分析全是错的。所以先对整体形势做判断,看看是否能接受是第一位的。

还有一点,就是补救措施分析,会被很多同学忽视。用户行为分析的第二大坑点,就是用户行为分析是“知其然、不知其所以然”的分析。

用户行为是各种因素影响结果,在企业实际中,不可能像实验室一样每个项目都做控制变量研究,即使提前做过ABtest,真正上线时也会因为天时地利有各种差异。

用户行为分析,就该这么做!

所以真遇到问题的时候,很有可能短时间内分析不出来原因,或者即使大概知道原因,也没办法把活动停掉/渠道换掉。此时的思路,不是纠结:这个到底是用户不喜欢文案还是不喜欢产品,而是:我们还能做什么挽回。

因此补救措施分析一定不能省,这样比孤零零喊:“这个流程不行啦!”要有价值得多。这也是为啥很多数据明明给了用户转化路径的问题,可业务方还是喊:“没有建设性”的原因。

没人喜欢报丧鸟天天喊:“要完啦!要完啦!”人们想听:“试试这个!试试这个!”

4. 情况四:情况不明,疑神疑鬼

这种情况,一般是某个业务做得不行,业务方又没有明确假设的时候。就想着:“能不能深入挖掘下用户行为?找找原因?”至于挖啥、挖出来啥原因,可能他们自己都不知道……

这是最难搞的情况。因为分析目标完全不清楚,这里有两个基本思路:

总之,从极端情况里,更容易找到解决问题的灵感。比如积分兑换,业务方只是觉得这个业务不行,哪里不行又说不上来。此时可以如下图,分两个思路看数据,如下图:

用户行为分析,就该这么做!

如果发现高价值用户明显偏好某些礼品兑换,则可以对应设计吸引高价值用户礼品方案。如果发现重度用户明显存在薅羊毛嫌疑,则可以对应修改奖励规则。总之,只要用户群体行为差异足够大,就能产生策略。

四、小结

从上边四大情况可以看出来,即使是同样的数据,面对不同情况,可以有不同展现方法。这就要求同学们在工作中,认真理解业务需求。

很多同学会说:直接问业务不就好了。问题是,四个情况里,除了情况三是很明确的有KPI压力以外,其他三个情况都很含糊,最后口头表达的需求就是:“做个用户行为分析看看”。

这就要求做数据的同学们,自己有一定的判断能力。以上四种情况是层层递进的,其逻辑关系如下图,同学们可以剥洋葱般的引导业务,找到真正关心的问题,从而做出有价值的分析。

用户行为分析,就该这么做!

#专栏作家#

接地气的陈老师,微信公众号:接地气学堂,人人都是产品经理专栏作家。资深咨询顾问,在互联网,金融,快消,零售,耐用,美容等15个行业有丰富数据相关经验。

本文原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议。

上一篇下一篇

猜你喜欢

热点阅读