2021-05-24
2021-05-24 本文已影响0人
__method__
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
mnist = keras.datasets.mnist
def get_train_val(mnist_path):
(train_images, train_labels), (test_images, test_labels) = mnist.load_data(mnist_path)
print("train_images nums:{}".format(len(train_images)))
print("test_images nums:{}".format(len(test_images)))
return train_images, train_labels, test_images, test_labels
def show_mnist(images, labels):
for i in range(25):
plt.subplot(5, 5, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(images[i], cmap=plt.cm.gray)
plt.xlabel(str(labels[i]))
plt.show()
def one_hot(labels):
onehot_labels = np.zeros(shape=[len(labels), 10])
for i in range(len(labels)):
index = labels[i]
onehot_labels[i][index] = 1
return onehot_labels
def mnist_net(input_shape):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=input_shape))
model.add(keras.layers.Dense(units=120, activation=tf.nn.relu))
model.add(keras.layers.Dense(units=10, activation=tf.nn.softmax))
return model
def mnist_cnn(input_shape):
model = keras.Sequential()
model.add(keras.layers.Conv2D(filters=32, kernel_size=5, strides=(1, 1),
padding='same', activation=tf.nn.relu, input_shape=input_shape))
model.add(keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(keras.layers.Conv2D(filters=64, kernel_size=3, strides=(1, 1), padding='same', activation=tf.nn.relu))
model.add(keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
model.add(keras.layers.Dropout(0.25))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(units=128, activation=tf.nn.relu))
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=10, activation=tf.nn.softmax))
return model
def trian_model(train_images, train_labels, test_images, test_labels):
# Normalize
train_images = train_images / 255.0
test_images = test_images / 255.0
train_images = np.expand_dims(train_images, axis=3)
test_images = np.expand_dims(test_images, axis=3)
print("train_images :{}".format(train_images.shape))
print("test_images :{}".format(test_images.shape))
train_labels = one_hot(train_labels)
test_labels = one_hot(test_labels)
model = mnist_cnn(input_shape=(28, 28, 1))
model.compile(optimizer=tf.train.AdamOptimizer(), loss="categorical_crossentropy", metrics=['accuracy'])
model_history = model.fit(x=train_images, y=train_labels, epochs=5, validation_data=(test_images, test_labels))
test_loss, test_acc = model.evaluate(x=test_images, y=test_labels)
print("Test Accuracy %.2f" % test_acc)
cnt = 0
predictions = model.predict(test_images)
for i in range(len(test_images)):
target = np.argmax(predictions[i])
label = np.argmax(test_labels[i])
if target == label:
cnt += 1
print("correct prediction of total : %.2f" % (cnt / len(test_images)))
model.save('mnist-model.h5')
return model_history
if __name__ == "__main__":
mnist_path = './mnist.npz'
train_images, train_labels, test_images, test_labels = get_train_val(mnist_path)
show_mnist(train_images, train_labels)
model_history = trian_model(train_images, train_labels, test_images, test_labels)
print(model_history.history)
epochs = range(5)
loss = model_history.history['loss']
val_loss = model_history.history['val_loss']
acc = model_history.history['acc']
plt.figure()
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.plot(epochs, acc, 'g', label='acc')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.ylim([0, 1])
plt.legend()
plt.show()
修改版
from keras.datasets import mnist
import tensorflow as tf
import numpy as np
from tensorflow import keras
import matplotlib.pyplot as plt
(train_images,train_labels),(test_images,test_labels)=mnist.load_data()
print(train_images.shape,train_labels.shape,test_images.shape,test_labels.shape)
# 搭建手写数字CNN模型
def mnist_cnn(input_shape):
model = keras.Sequential()
# 第一层卷积
model.add(keras.layers.Conv2D(filters=32, kernel_size=5, strides=(1, 1),
padding="same", activation=tf.nn.relu, input_shape =input_shape))
# 池化
model.add(keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
# 卷积
model.add(keras.layers.Conv2D(filters=64, kernel_size=3, strides=(1, 1),
padding="same", activation=tf.nn.relu))
# 池化
model.add(keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='valid'))
# 防止过拟合
model.add(keras.layers.Dropout(0.25))
# 展平
model.add(keras.layers.Flatten())
# 全连接层
model.add(keras.layers.Dense(units=128, activation=tf.nn.relu))
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=10, activation=tf.nn.softmax))
return model
def trian_model(train_images, train_labels, test_images, test_labels):
# Normalize
train_images = train_images / 255.0
test_images = test_images / 255.0
train_images = np.expand_dims(train_images, axis=3)
test_images = np.expand_dims(test_images, axis=3)
print("train_images :{}".format(train_images.shape))
print("test_images :{}".format(test_images.shape))
train_labels = one_hot(train_labels)
test_labels = one_hot(test_labels)
model = mnist_cnn(input_shape=(28, 28, 1))
model.compile(optimizer=tf.train.AdamOptimizer(), loss="categorical_crossentropy", metrics=['accuracy'])
model_history = model.fit(x=train_images, y=train_labels, epochs=5, validation_data=(test_images, test_labels))
test_loss, test_acc = model.evaluate(x=test_images, y=test_labels)
print("Test Accuracy %.2f" % test_acc)
cnt = 0
predictions = model.predict(test_images)
for i in range(len(test_images)):
target = np.argmax(predictions[i])
label = np.argmax(test_labels[i])
if target == label:
cnt += 1
print("correct prediction of total : %.2f" % (cnt / len(test_images)))
model.save('mnist-model.h5')
return model_history
def one_hot(labels):
onehot_labels = np.zeros(shape=[len(labels), 10])
for i in range(len(labels)):
index = labels[i]
onehot_labels[i][index] = 1
return onehot_labels
def mnist_net(input_shape):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=input_shape))
model.add(keras.layers.Dense(units=120, activation=tf.nn.relu))
model.add(keras.layers.Dense(units=10, activation=tf.nn.softmax))
return model
if __name__ == "__main__":
model_history = trian_model(train_images, train_labels, test_images, test_labels)
print(model_history.history)
epochs = range(5)
loss = model_history.history['loss']
val_loss = model_history.history['val_loss']
acc = model_history.history['acc']
plt.figure()
plt.plot(epochs, loss, 'r', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.plot(epochs, acc, 'g', label='acc')
plt.title('Training and Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss Value')
plt.ylim([0, 1])
plt.legend()
plt.show()