分布式之延时任务方案解析

2019-01-19  本文已影响0人  Java大生

方案分析

(1)数据库轮询

思路

该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作

实现

博主当年早期是用quartz来实现的(实习那会的事),简单介绍一下

maven项目引入一个依赖如下所示

<dependency>

<groupId>org.quartz-scheduler</groupId>

<artifactId>quartz</artifactId>

<version>2.2.2</version>

</dependency>

调用Demo类MyJob如下所示

package com.rjzheng.delay1;

import org.quartz.JobBuilder;

import org.quartz.JobDetail;

import org.quartz.Scheduler;

import org.quartz.SchedulerException;

import org.quartz.SchedulerFactory;

import org.quartz.SimpleScheduleBuilder;

import org.quartz.Trigger;

import org.quartz.TriggerBuilder;

import org.quartz.impl.StdSchedulerFactory;

import org.quartz.Job;

import org.quartz.JobExecutionContext;

import org.quartz.JobExecutionException;

public class MyJob implements Job {

public void execute(JobExecutionContext context)

throws JobExecutionException {

System.out.println("要去数据库扫描啦。。。");

}

public static void main(String[] args) throws Exception {

// 创建任务

JobDetail jobDetail = JobBuilder.newJob(MyJob.class)

.withIdentity("job1", "group1").build();

// 创建触发器 每3秒钟执行一次

Trigger trigger = TriggerBuilder

.newTrigger()

.withIdentity("trigger1", "group3")

.withSchedule(

SimpleScheduleBuilder.simpleSchedule()

.withIntervalInSeconds(3).repeatForever())

.build();

Scheduler scheduler = new StdSchedulerFactory().getScheduler();

// 将任务及其触发器放入调度器

scheduler.scheduleJob(jobDetail, trigger);

// 调度器开始调度任务

scheduler.start();

}

}

运行代码,可发现每隔3秒,输出如下

要去数据库扫描啦。。

优缺点

优点:简单易行,支持集群操作

缺点:(1)对服务器内存消耗大

(2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟

(3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大

(2)JDK的延迟队列

思路

该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。

DelayedQueue实现工作流程如下图所示

其中Poll():获取并移除队列的超时元素,没有则返回空

take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。

实现

定义一个类OrderDelay实现Delayed,代码如下

package com.rjzheng.delay2;

import java.util.concurrent.Delayed;

import java.util.concurrent.TimeUnit;

public class OrderDelay implements Delayed {

private String orderId;

private long timeout;

OrderDelay(String orderId, long timeout) {

this.orderId = orderId;

this.timeout = timeout + System.nanoTime();

}

public int compareTo(Delayed other) {

if (other == this)

return 0;

OrderDelay t = (OrderDelay) other;

long d = (getDelay(TimeUnit.NANOSECONDS) - t

.getDelay(TimeUnit.NANOSECONDS));

return (d == 0) ? 0 : ((d < 0) ? -1 : 1);

}

// 返回距离你自定义的超时时间还有多少

public long getDelay(TimeUnit unit) {

return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS);

}

void print() {

System.out.println(orderId+"编号的订单要删除啦。。。。");

}

}

运行的测试Demo为,我们设定延迟时间为3秒

package com.rjzheng.delay2;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.DelayQueue;

import java.util.concurrent.TimeUnit;

public class DelayQueueDemo {

public static void main(String[] args) {

// TODO Auto-generated method stub 

List<String> list = new ArrayList<String>();

list.add("00000001");

list.add("00000002");

list.add("00000003");

list.add("00000004");

list.add("00000005");

DelayQueue<OrderDelay> queue = new DelayQueue<OrderDelay>();

long start = System.currentTimeMillis();

for(int i = 0;i<5;i++){

//延迟三秒取出

queue.put(new OrderDelay(list.get(i),

TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS)));

try {

queue.take().print();

System.out.println("After " +

(System.currentTimeMillis()-start) + " MilliSeconds");

} catch (InterruptedException e) {

// TODO Auto-generated catch block 

e.printStackTrace();

}

}

}

}

输出如下

1000000001编号的订单要删除啦。。。。

After 3003 MilliSeconds

00000002编号的订单要删除啦。。。。

After 6006 MilliSeconds

00000003编号的订单要删除啦。。。。

After 9006 MilliSeconds

00000004编号的订单要删除啦。。。。

After 12008 MilliSeconds

00000005编号的订单要删除啦。。。。

After 15009 MilliSeconds

可以看到都是延迟3秒,订单被删除

优缺点

优点:效率高,任务触发时间延迟低。

缺点:(1)服务器重启后,数据全部消失,怕宕机

(2)集群扩展相当麻烦

(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常

(4)代码复杂度较高

(3)时间轮算法

思路

先上一张时间轮的图(这图到处都是啦)

时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。

如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)

实现

我们用Netty的HashedWheelTimer来实现

给Pom加上下面的依赖

<dependency>

<groupId>io.netty</groupId>

<artifactId>netty-all</artifactId>

<version>4.1.24.Final</version>

</dependency>

测试代码HashedWheelTimerTest如下所示

package com.rjzheng.delay3;

import io.netty.util.HashedWheelTimer;

import io.netty.util.Timeout;

import io.netty.util.Timer;

import io.netty.util.TimerTask;

import java.util.concurrent.TimeUnit;

public class HashedWheelTimerTest {

static class MyTimerTask implements TimerTask{

boolean flag;

public MyTimerTask(boolean flag){

this.flag = flag;

}

public void run(Timeout timeout) throws Exception {

// TODO Auto-generated method stub

System.out.println("要去数据库删除订单了。。。。");

this.flag =false;

}

}

public static void main(String[] argv) {

MyTimerTask timerTask = new MyTimerTask(true);

Timer timer = new HashedWheelTimer();

timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);

int i = 1;

while(timerTask.flag){

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

System.out.println(i+"秒过去了");

i++;

}

}

}

输出如下

71秒过去了

2秒过去了

3秒过去了

4秒过去了

5秒过去了

要去数据库删除订单了。。。。

6秒过去了

优缺点

优点:效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。

缺点:(1)服务器重启后,数据全部消失,怕宕机

(2)集群扩展相当麻烦

(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常

(4)redis缓存

思路一

利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值zset常用命令添加元素:ZADD key score member [[score member] [score member] …]按顺序查询元素:ZRANGE key start stop [WITHSCORES]查询元素score:ZSCORE key member移除元素:ZREM key member [member …]测试如下

# 添加单个元素

redis> ZADD page_rank 10 google.com

(integer) 1

# 添加多个元素

redis> ZADD page_rank 9 baidu.com 8 bing.com

(integer) 2

redis> ZRANGE page_rank 0 -1 WITHSCORES

1) "bing.com"

2) "8"

3) "baidu.com"

4) "9"

5) "google.com"

6) "10"

# 查询元素的score值

redis> ZSCORE page_rank bing.com

"8"

# 移除单个元素

redis> ZREM page_rank google.com

(integer) 1

redis> ZRANGE page_rank 0 -1 WITHSCORES

1) "bing.com"

2) "8"

3) "baidu.com"

4) "9"

那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示

实现一

package com.rjzheng.delay4;

import java.util.Calendar;

import java.util.Set;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.JedisPool;

import redis.clients.jedis.Tuple;

public class AppTest {

private static final String ADDR = "127.0.0.1";

private static final int PORT = 6379;

private static JedisPool jedisPool = new JedisPool(ADDR, PORT);

public static Jedis getJedis() {

return jedisPool.getResource();

}

//生产者,生成5个订单放进去

public void productionDelayMessage(){

for(int i=0;i<5;i++){

//延迟3秒

Calendar cal1 = Calendar.getInstance();

cal1.add(Calendar.SECOND, 3);

int second3later = (int) (cal1.getTimeInMillis() / 1000);

AppTest.getJedis().zadd("OrderId", second3later,"OID0000001"+i);

System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);

}

}

//消费者,取订单

public void consumerDelayMessage(){

Jedis jedis = AppTest.getJedis();

while(true){

Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);

if(items == null || items.isEmpty()){

System.out.println("当前没有等待的任务");

try {

Thread.sleep(500);

} catch (InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

continue;

}

int score = (int) ((Tuple)items.toArray()[0]).getScore();

Calendar cal = Calendar.getInstance();

int nowSecond = (int) (cal.getTimeInMillis() / 1000);

if(nowSecond >= score){

String orderId = ((Tuple)items.toArray()[0]).getElement();

jedis.zrem("OrderId", orderId);

System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);

}

}

}

public static void main(String[] args) {

AppTest appTest =new AppTest();

appTest.productionDelayMessage();

appTest.consumerDelayMessage();

}

}

此时对应输出如下

131525086085261ms:redis生成了一个订单任务:订单ID为OID00000010

1525086085263ms:redis生成了一个订单任务:订单ID为OID00000011

1525086085266ms:redis生成了一个订单任务:订单ID为OID00000012

1525086085268ms:redis生成了一个订单任务:订单ID为OID00000013

1525086085270ms:redis生成了一个订单任务:订单ID为OID00000014

1525086088000ms:redis消费了一个任务:消费的订单OrderId为OID00000010

1525086088001ms:redis消费了一个任务:消费的订单OrderId为OID00000011

1525086088002ms:redis消费了一个任务:消费的订单OrderId为OID00000012

1525086088003ms:redis消费了一个任务:消费的订单OrderId为OID00000013

1525086088004ms:redis消费了一个任务:消费的订单OrderId为OID00000014

当前没有等待的任务

当前没有等待的任务

当前没有等待的任务

可以看到,几乎都是3秒之后,消费订单。

然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest

package com.rjzheng.delay4;

import java.util.concurrent.CountDownLatch;

public class ThreadTest {

private static final int threadNum = 10;

private static CountDownLatch cdl = new CountDownLatch(threadNum);

static class DelayMessage implements Runnable{

public void run() {

try {

cdl.await();

} catch (InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

AppTest appTest =new AppTest();

appTest.consumerDelayMessage();

}

}

public static void main(String[] args) {

AppTest appTest =new AppTest();

appTest.productionDelayMessage();

for(int i=0;i<threadNum;i++){

new Thread(new DelayMessage()).start();

cdl.countDown();

}

}

}

输出如下所示

221525087157727ms:redis生成了一个订单任务:订单ID为OID00000010

1525087157734ms:redis生成了一个订单任务:订单ID为OID00000011

1525087157738ms:redis生成了一个订单任务:订单ID为OID00000012

1525087157747ms:redis生成了一个订单任务:订单ID为OID00000013

1525087157753ms:redis生成了一个订单任务:订单ID为OID00000014

1525087160009ms:redis消费了一个任务:消费的订单OrderId为OID00000010

1525087160011ms:redis消费了一个任务:消费的订单OrderId为OID00000010

1525087160012ms:redis消费了一个任务:消费的订单OrderId为OID00000010

1525087160022ms:redis消费了一个任务:消费的订单OrderId为OID00000011

1525087160023ms:redis消费了一个任务:消费的订单OrderId为OID00000011

1525087160029ms:redis消费了一个任务:消费的订单OrderId为OID00000011

1525087160038ms:redis消费了一个任务:消费的订单OrderId为OID00000012

1525087160045ms:redis消费了一个任务:消费的订单OrderId为OID00000012

1525087160048ms:redis消费了一个任务:消费的订单OrderId为OID00000012

1525087160053ms:redis消费了一个任务:消费的订单OrderId为OID00000013

1525087160064ms:redis消费了一个任务:消费的订单OrderId为OID00000013

1525087160065ms:redis消费了一个任务:消费的订单OrderId为OID00000014

1525087160069ms:redis消费了一个任务:消费的订单OrderId为OID00000014

当前没有等待的任务

当前没有等待的任务

当前没有等待的任务

当前没有等待的任务

显然,出现了多个线程消费同一个资源的情况。

解决方案

(1)用分布式锁,但是用分布式锁,性能下降了,该方案不细说。

(2)对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的

if(nowSecond >= score){

String orderId = ((Tuple)items.toArray()[0]).getElement();

jedis.zrem("OrderId", orderId);

System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);

}

修改为

if(nowSecond >= score){

String orderId = ((Tuple)items.toArray()[0]).getElement();

Long num = jedis.zrem("OrderId", orderId);

if( num != null && num>0){

System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);

}

}

在这种修改后,重新运行ThreadTest类,发现输出正常了

思路二

该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。

实现二

在redis.conf中,加入一条配置

1notify-keyspace-events Ex

运行代码如下

package com.rjzheng.delay5;

import redis.clients.jedis.Jedis;

import redis.clients.jedis.JedisPool;

import redis.clients.jedis.JedisPubSub;

public class RedisTest {

private static final String ADDR = "127.0.0.1";

private static final int PORT = 6379;

private static JedisPool jedis = new JedisPool(ADDR, PORT);

private static RedisSub sub = new RedisSub();

public static void init() {

new Thread(new Runnable() {

public void run() {

jedis.getResource().subscribe(sub, "__keyevent@0__:expired");

}

}).start();

}

public static void main(String[] args) throws InterruptedException {

init();

for(int i =0;i<10;i++){

String orderId = "OID000000"+i;

jedis.getResource().setex(orderId, 3, orderId);

System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");

}

}

static class RedisSub extends JedisPubSub {

<a href='http://www.jobbole.com/members/wx610506454'>@Override</a>

public void onMessage(String channel, String message) {

System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");

}

}

}

输出如下

141525096202813ms:OID0000000订单生成

1525096202818ms:OID0000001订单生成

1525096202824ms:OID0000002订单生成

1525096202826ms:OID0000003订单生成

1525096202830ms:OID0000004订单生成

1525096202834ms:OID0000005订单生成

1525096202839ms:OID0000006订单生成

1525096205819ms:OID0000000订单取消

1525096205920ms:OID0000005订单取消

1525096205920ms:OID0000004订单取消

1525096205920ms:OID0000001订单取消

1525096205920ms:OID0000003订单取消

1525096205920ms:OID0000006订单取消

1525096205920ms:OID0000002订单取消

可以明显看到3秒过后,订单取消了

ps:redis的pub/sub机制存在一个硬伤,官网内容如下原:Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.翻: Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。

因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。

优缺点

优点:(1)由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。

(2)做集群扩展相当方便

(3)时间准确度高

缺点:(1)需要额外进行redis维护

(5)使用消息队列

我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列

RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter

lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。

结合以上两个特性,就可以模拟出延迟消息的功能,具体的

优缺点

优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。

缺点:本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高

上一篇下一篇

猜你喜欢

热点阅读