大数据在怎样的时代卖给怎样的人
安全问题其实多数时候是企业用来拒绝你的一个借口,而不是真正的理由。那些企业不是对安全的需求太高,而是对数据分析的需求太低。
在这个属于大数据的时代,在向企业推广数据服务时会遭遇哪些困难?
有四种企业会在需要大数据服务的同时很难找到合适的大数据服务。
第一种是规模不够大。一方面就是钱不够多,不愿意购买企业服务;一方面就是数据不够多,靠 excel 就能自己解决。这种情况下,他们可能对数据服务有兴趣,但真的卖给他们却并不现实。
第二种是数据类型单一。像很多比较传统的企业,有 ERP 或者 CRM 就满足了绝大多数的现阶段需求,对海致 BDP 这种多维度的数据分析,暂时意识不到其重要性。
第三种是管理层本身的数据意识还没建立起来。长久以来依靠控制成本或者引入资本就能实现盈利,还没有遭遇管理层面的困难,不了解数据驱动经营的重要性,还不很追求效率。
第四种是人员素质没达到相应程度。不是说人员素质低,而是他们的数据意识不足,互联网意识不足,对数据操作、分析比较麻木。这种企业会有需求,甚至会付费购买服务,但是买了以后,使用频率很低,而且经常热乎劲儿一过就不用了。因为用产品的最终还是人。
综合来看,这些企业并非不需要数据服务,而且也有购买欲望。要解决的终究是细节问题,一方面企业自身会逐渐升级,一些数据服务产品也会逐渐优化。
那么相对而言,有哪些企业更容易接受这些服务呢?
一般来说就是中等规模的互联网企业了。优势主要有四个方面。
第一是数据量很多。互联网企业到一定规模,用户量就会特别大。用户量大了,数据自然非常多。
第二是数据来源分散,数据维度很多。来自网页的数据,来自 app 的数据,业务的数据,管理的数据,这样就存在整合需求,需要一个数据平台。
第三是行业本身变化快。有两种情况,一种是行业发展日新月异,传统的分析方法难以满足不断增长的需求;一种是行业本身很年轻,合理的分析方法还没建立起来。这种情况下,多来源、多角度的数据分析意义就很大,能力求全面、客观,避免将分析的力气用错方向。
第四是数据驱动意识强。本身就都是互联网人,都有互联网基因,深刻了解数据的重要性,管理层每天第一件事情可能就是分析数据,使用强度很高。
这些互联网企业有着极其旺盛的需求,又非常明白自己进行数据分析的成本之高昂,因此使用数据服务的热情十分高涨。
在传统行业方面,业务对互联网的依赖程度越高,使用数据服务的意识就越好,需求也就越强。
为什么是中等规模企业更需要数据服务,而非小微企业或大型企业?
小微企业规模不够大,数据没有多到需要花钱分析的级别。但是当数据量大到一个程度,比如 1TB,一方面 excel 就很难处理了,一方面负责分析的人也忙不过来了,这就需要专门的数据服务。
大企业,如果有钱到了自己建立数据团队和计算节点也不心疼,那肯定会考虑自己分析数据的,也不会使用外部服务。
现在的企业数据服务都是云计算服务吗?
大多数都是。这是因为单一企业就算数据分析的需求很强、频率很高,真正用于分析的绝对时间也是不多的。这就会导致浪费,非常昂贵的计算节点每天只用那么几秒钟,很不划算。不如使用云端服务,不必自己设置昂贵的计算节点。
有人考虑到安全的问题。安全问题其实多数时候是企业用来拒绝你的一个借口,而不是真正的理由。那些企业不是对安全的需求太高,而是对数据分析的需求太低。只有少数用户是真的非常在乎安全问题的,比如银行和运营商。对这些用户,应该为其提供本地化的服务。
数据服务的痛点有哪些?
有一些简单的例子。
首先是性能。计算一亿条数据,需要用多长时间。如果几秒就可以计算完毕,你的服务就是合格的。这也是云计算的优势。
其次是多账号。有一些传统的数据平台,多人同时使用会崩溃。海致 BDP 允许每个员工都有帐号,每个帐号有不同的权限,可以查看自己需要查看的数据。对于基层和管理层来说,这样的系统都有价值。
再次是可视化。并非每个使用者都是专业的数据分析人员,有些只是具备基础的 excel 知识,这时候可视化意义就非常重大。
然后是数据的采集。不同来源的数据怎么采集,涉及个性化的服务,需要平台和企业对接。不同行业的需求肯定有着较大差异,想要以不变应万变很不现实。这也是 toB 服务得以垂直细分而且应该垂直细分的理由。
然后是数据的导入。比如海致 BDP 提供了数据库、excel 和 API 三种导入方式,就可以满足不同企业的需求,还可以整合同一企业不同来源的数据。
如何面对不同行业的多种挑战?
肯定是要慢慢来。拿海致 BDP 来说,在接触新行业时,一般会接触行业内最大、最有代表性的企业,以低廉的价格向其提供服务,与其对接。在这个过程中,海致 BDP 得以了解行业的需求,优化对这一行业的服务,并将其扩展开来。
也不一定完全靠人。虽然一般人理解上的人工智能还比较遥远,但是机器学习,甚至比较深度的机器学习的广泛应用不会太远。事实上很多互联网公司早已或多或少应用了机器学习。在大数据这一领域,让机器去接触、适应不同行业的数据,价值非常巨大。
客观来说,toB 服务还是有很大的细分空间的,细分的领域非常多,每个领域也都会有几家比较有特色。所以这个市场可能真的不是二八定律,而是 80% 的企业占据 80% 的市场。
为什么说现在到了企业服务的风口?
从时机和环境来分析。
时机方面,从两个角度考虑,一个是提供服务的基础,一个是需求服务的市场。2013 年开始,云计算开始流行,之后基础云服务快速兴起,应该 3~5 年内就会成为主流。经过一段时间的蛰伏,供给方有了提供云服务的能力。
需求这边,整个中国的经济发展都到了转型时期。曾经的靠低人力成本、低价格粗暴经营的企业,面对越来越多的竞争,已经力不从心了。这时候,企业就会开始寻求新的增长点,从控制成本过渡到提高效率。所以说,曾经没有数据分析需求的企业如今都会逐渐产生需求,曾经不注重互联网思维的企业如今都要开始注重。
环境方面则涉及所服务行业的规模。如前所述,数据量级达到一定程度,采集数据的来源、维度多到一定程度,行业本身有足够大的规模,做这个行业的服务才有意义。这个行业是否成熟,数据是否达到了一个临界点,使得分析数据后,它的效率可以有提升——这是行业能否展开数据分析的条件。
在中国,很多行业的发展都已经有了一定水平,同时也遭遇到了一些困境。如果困境难以用传统方式解决,行业本身又具备投入资源探索问题的能力,互联网化、数据化就是势在必行的。