简友广场散文想法

R语言假设检验两类错误的概率

2021-04-29  本文已影响0人  Cache_wood

Task 1

Assume samples X1, · · · , Xn are independently identically distribution from P(λ), consider the hypothesis

test

H_0 : λ ≥ 1 vs H_1 : λ < 1

and the test statistic is

T(X1, · · · , Xn) = \sum _n^iX_i=1

and the form of rejection region is

W = {T(X_1, · · · , X_n) ≤ C}.

Next we will investigate how the sample size n, the true value of λ and the significance level α influence the power of test.

Note that the power function is

g(λ) = P(T(X1, · · · , Xn) ≤ C|T(X1, · · · , Xn) ~ P(nλ)),

which can be obtained via ppois(C, nλ) in R.

PoissonPowerf<-function(n=10,C=5,lambdas=1){

lam<-n*lambdas

alpha_lam<-ppois(C,lambda = lam)

return(alpha_lam)
  1. Obtain power function curve under different samples with the sample critical value C.
lams<-seq(0.01,2,by=0.01)

#true value of candidate for lambda

Ns<-c(10,20,40)

#sample size

power.n<-matrix(0,nr=length(lams),nc=length(Ns))

#length(lams) times length(Ns) matrix

#element[i,j] being the power when true value of lambda is lam[i] and sample size is Ns[j].

for (i in 1:length(lams)) {

for (j in 1:length(Ns)) {

power.n[i,j]<-PoissonPowerf(n=Ns[j],C=7,lambdas = lams[i])

} }

#plot

plot(lams,power.n[,1],type = 'l',lty=1,xlab = expression(lambda),ylab = 'Power',

main = 'Power function under different sample sizes',lwd=2)

lines(lams,power.n[,2],lty=2,col=2,lwd=2)

lines(lams,power.n[,3],lty=3,col=3,lwd=2) 1

abline(v=1,lwd=2)

legend('topright',legend = c('n=10', 'n=20','n=40'), lty=1:3,col=1:3,lwd=2)
在这里插入图片描述

From the above figure, it follows:

the true value of λ deviation from the null hypothesis H0 : λ ≥ 1.

increase, and specically the significance levels decreases as n increases.

  1. Obtain power function curve under different samples with the sample α.

To obtain it, we should calculate the rejection region, i.e., the critical value of C. By the definition of

signicance test with significance level α, it suffices to determine C such that

g(λ) = P(T(X1, · · · , Xn ≤ C)|T ~ P(nλ)) ≤ α, ?λ ∈ H0.

Recall that g(λ) is a decreasing function for λ ≥ 1, thus ?λ ≥ 1, g(λ) ≤ α is equivalent to

g(1) = P(T(X1, · · · , Xn ≤ C)|T ~ P(n)) ≤ α,

from which we can obtain C via qpois(α, n) in R. That is,

power.alpha<-matrix(0,nr=length(lams),

nc=length(Ns))

for (j in 1:length(Ns)) {

Cs<-qpois(0.05,Ns[j])

for (i in 1:length(lams)) {

power.alpha[i,j]<-PoissonPowerf(n=Ns[j],C=Cs,lambdas = lams[i])
#plot
plot(lams,power.alpha[,1],type = 'l',lty=1,xlab = expression(lambda),ylab = 'Power',

main = 'Fixed alpha, power function under different sample sizes',lwd=2)

lines(lams,power.alpha[,2],lty=2,col=2,lwd=2)

lines(lams,power.alpha[,3],lty=3,col=3,lwd=2)

abline(v=1,lwd=2)

legend('topright',legend = c('n=10', 'n=20','n=40'), lty=1:3,col=1:3,lwd=2)

Similarly, from the above figure, it follows:

greater as the true value of λ deviation from the null hypothesis H0 : λ ≥ 1.

  1. In summary, we can see that

the power of test increases as the true value of λ derviation far from H0; ? for fixed significance level α, the power of test increases as sample size increases;

yet for fixed critical value, i.e. C = 7, the power decreases as the sample size increase, which leads the

decreasing of the siginicance level α. 3


在这里插入图片描述
上一篇 下一篇

猜你喜欢

热点阅读