java从0到架构师

36_深入聚合数据分析_bucket嵌套实现颜色+生产商的多层下

2020-02-28  本文已影响0人  小山居

36_深入聚合数据分析_bucket嵌套实现颜色+生产商的多层下钻分析

从颜色到品牌进行下钻分析,每种颜色的平均价格,以及找到每种颜色每个品牌的平均价格

我们可以进行多层次的下钻

比如说,现在红色的电视有4台,同时这4台电视中,有3台是属于长虹的,1台是属于小米的

红色电视中的3台长虹的平均价格是多少?
红色电视中的1台小米的平均价格是多少?

下钻的意思是,已经分了一个组了,比如说颜色的分组,然后还要继续对这个分组内的数据,再分组,比如一个颜色内,还可以分成多个不同的品牌的组,最后对每个最小粒度的分组执行聚合分析操作,这就叫做下钻分析

es,下钻分析,就要对bucket进行多层嵌套,多次分组

按照多个维度(颜色+品牌)多层下钻分析,而且学会了每个下钻维度(颜色,颜色+品牌),都可以对每个维度分别执行一次metric聚合操作

GET /tvs/sales/_search 
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "color_avg_price": {
          "avg": {
            "field": "price"
          }
        },
        "group_by_brand": {
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "brand_avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
  }
}

搜索结果

{
  "took": 8,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_color": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "红色",
          "doc_count": 4,
          "color_avg_price": {
            "value": 3250
          },
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "长虹",
                "doc_count": 3,
                "brand_avg_price": {
                  "value": 1666.6666666666667
                }
              },
              {
                "key": "三星",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 8000
                }
              }
            ]
          }
        },
        {
          "key": "绿色",
          "doc_count": 2,
          "color_avg_price": {
            "value": 2100
          },
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "TCL",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 1200
                }
              },
              {
                "key": "小米",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 3000
                }
              }
            ]
          }
        },
        {
          "key": "蓝色",
          "doc_count": 2,
          "color_avg_price": {
            "value": 2000
          },
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "TCL",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 1500
                }
              },
              {
                "key": "小米",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 2500
                }
              }
            ]
          }
        }
      ]
    }
  }
}
上一篇下一篇

猜你喜欢

热点阅读