矩阵
2017-04-27 本文已影响56人
zhao1zhihui
矩阵
矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义[1] 。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。
1、定义
设A为 的矩阵,B为 的矩阵,那么称 的矩阵C为矩阵A与B的乘积,记作 ,其中矩阵C中的第 行第 列元素可以表示为:
如下所示:
注意事项
当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。
矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
基本性质
乘法结合律: (AB)C=A(BC).[2]
乘法左分配律:(A+B)C=AC+BC[2]
乘法右分配律:C(A+B)=CA+CB[2]
对数乘的结合性k(AB)=(kA)B=A(kB).
转置 (AB)T=BTAT.
矩阵乘法一般不满足交换律[3] 。
Hadamard乘积
矩阵 与 矩阵 的Hadamard积记为 。其元素定义为两个矩阵对应元素的乘积 的m×n矩阵[2] 。例如,
Kronecker乘积
Kronecker积是两个任意大小的矩阵间的运算,表示为 。克罗内克积也成为直积或张量积[4] .以德国数学家利奥波德·克罗内克命名。计算过程如下例所示:
参考文章地址
1、矩阵
2、矩阵
3、矩阵变换高级
2 3 4 5 6 7 8 9 10 11 12