PYTHON 交通流 车辆到达分布 速度流量密度 高峰小时
2017-11-03 本文已影响332人
五长生
image.png
image.png
image.png
交通流实验如上
车辆到达分布
1027 17 2.33207715978 符合负二项分布 .png散点图
1031 10 11[6, 42, 1297.8333333333333, 367.0, 0.88408265213442316].png解析出的数据
image.pngimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')
#计算高峰小时
global end,start,vds
A=[]
B=[]
C=[]
D=[]
M=[]
S=[]
def init(start,end,vds):#初始化 数据录入部分
df = {}
didi = []
for i in range(0, end - start):
df[i] = pd.read_excel(
'C:\\Users\Administrator\Desktop\Whitemud Drive地感线圈数据(2015年8月)\\' + str(vds) + '-08-' + str(
start + i) + '.xls', sheetname='Sheet3')
didi.append(len(df[i]))
length = int(min(didi) / 100) * 100
for i in range(0, end - start):
df[i] = df[i][0:length]
df[i] = df[i].fillna(0)
global K,Q,V
K = np.zeros((length, end - start))
Q = np.zeros((length, end - start))
V = np.zeros((length, end - start))
for i in range(0, end - start):
for j in range(0, length):
if df[i]['K 2'][j] != 0 and df[i]['K 3'][j] != 0 and df[i]['K 1'][j] != 0:
K[j, i] = (df[i]['K 1'][j] + df[i]['K 2'][j] + df[i]['K 3'][j]) / 3
Q[j, i] = (df[i]['V 1'][j] + df[i]['V 2'][j] + df[i]['V 3'][j]) / 3
V[j, i] = (df[i]['S 1'][j] + df[i]['S 2'][j] + df[i]['S 3'][j]) / 3
if (df[i]['K 2'][j] != 0 and df[i]['K 3'][j] == 0 and df[i]['K 1'][j] == 0) or (
df[i]['K 2'][j] == 0 and df[i]['K 3'][j] != 0 and df[i]['K 1'][j] == 0) or (
df[i]['K 2'][j] == 0 and df[i]['K 3'][j] == 0 and df[i]['K 1'][j] != 0):
K[j, i] = ((df[i]['K 1'][j] + df[i]['K 2'][j] + df[i]['K 3'][j]))
Q[j, i] = ((df[i]['V 1'][j] + df[i]['V 2'][j] + df[i]['V 3'][j]))
V[j, i] = ((df[i]['S 1'][j] + df[i]['S 2'][j] + df[i]['S 3'][j]))
if (df[i]['K 2'][j] != 0 and df[i]['K 3'][j] != 0 and df[i]['K 1'][j] == 0) or (
df[i]['K 2'][j] == 0 and df[i]['K 3'][j] != 0 and df[i]['K 1'][j] != 0) or (
df[i]['K 2'][j] != 0 and df[i]['K 3'][j] == 0 and df[i]['K 1'][j] != 0):
K[j, i] = (df[i]['K 1'][j] + df[i]['K 2'][j] + df[i]['K 3'][j]) / 2
Q[j, i] = (df[i]['V 1'][j] + df[i]['V 2'][j] + df[i]['V 3'][j]) / 2
V[j, i] = (df[i]['S 1'][j] + df[i]['S 2'][j] + df[i]['S 3'][j]) / 2
K[K > 80] = 80
def PHT():#计算高峰小时
Q1=Q[:,0]/180
for i in range(len(Q1),0,-1):
if i%3==0 and i%6==0 and i%15==0:
break
Q1=Q1[0:i]
Z=np.array(Q1).reshape((int(i/3),3))
sum=Z.sum(axis=1)
if sum.sum()<=10:
return 0
maxhour=0
max15=0
for i in range(0,len(Z)-60):
emm=Z[i:i + 60].sum()
if emm>maxhour:
maxhour=emm
starttime=i
for i in range(0,len(Z)-15):
emm=Z[i:i + 15].sum()
if emm>max15:
max15=emm
# print(starttime,maxhour,max15)
# print(maxhour/(4*max15))
# print(int(starttime/60),(starttime%60))
# temp=[int(starttime/60),starttime%60,maxhour,max15,maxhour/(max15*4)]
# time=str(int(starttime/60))+':'+str(starttime%60)
# C.append(time)
# A.append(vds)
# B.append(start)
# return temp
return starttime
def modal(min):#检验分布函数
various=min.var()/min.mean()
if various>1.2:
print('符合负二项分布')
return 1,various
if various<1.2 and various>1 :
print('符合泊松分布')
return 2,various
if various < 1:
print('二项分布')
return 3,various
def arrival():#车辆到达分布
#计算最大公约数
Q1 = Q[:, 0] / 180
for i in range(len(Q1),0,-1):
if i%3==0 and i%6==0 and i%15==0:
break
Q1=Q1[0:i]
#计算频次
min1=np.array(Q1[:,0]).reshape((int(i/3),3))
min2 = np.array(Q1[:,0]).reshape((int(i/6), 6))
min5 = np.array(Q1[:,0]).reshape((int(i/15) , 15))
min1=min1.sum(axis=1)
min2 = min2.sum(axis=1)
min5 = min5.sum(axis=1)
if min5.sum()<10:
return 0
M.append(min1.mean())
S.append(min1.var())
min1=min1[min1>5]
min2 = min2[min2 >5]
min5 = min5[min5 >5]
#验证分布
temp,various=modal(min1)
modal(min2)
modal(min5)
#画图并保存
plt.subplot(311)
sns.distplot(min1, color='#ff8000')
plt.subplot(312)
sns.distplot(min2, color='#ff8000')
plt.subplot(313)
sns.distplot(min5, color='#ff8000')
#
# if temp==1:
# plt.savefig('E:\\arrival\负二项分布\\'+str(vds)+' '+str(start)+' '+str(various)+' 符合负二项分布'+' '+'.png')
# if temp==2:
# plt.savefig('E:\\arrival\泊松分布\\'+str(vds)+' '+str(start)+' '+str(various)+' 符合泊松分布'+' '+'.png')
# if temp==3:
# plt.savefig('E:\\arrival\二项分布\\'+str(vds)+' '+str(start)+' '+str(various)+' 二项分布'+' '+'.png')
#plt.close()
D.append(temp)
def hourarrival():#高峰小时车辆到达分布
starttime=PHT()
#print(starttime*3)
endtime=starttime*3+180
Q1=Q[starttime*3:endtime]/180
#print(Q1[:,0])
min1 = np.array(Q1[:, 0]).reshape((int(len(Q1)/ 3), 3))
min2 = np.array(Q1[:, 0]).reshape((int(len(Q1)/ 6), 6))
min5 = np.array(Q1[:, 0]).reshape((int(len(Q1)/ 15), 15))
min1 = min1.sum(axis=1)
min2 = min2.sum(axis=1)
min5 = min5.sum(axis=1)
if min5.sum() < 10:
return 0
M.append(min1.mean())
S.append(min1.var())
min1 = min1[min1 > 1]
min2 = min2[min2 > 1]
min5 = min5[min5 > 1]
# 验证分布
#temp, various = modal(min1)
#modal(min2)
temp,various=modal(min5)
# 画图并保存
# plt.subplot(311)
# sns.distplot(min1, color='#ff8000')
# plt.subplot(312)
# sns.distplot(min2, color='#ff8000')
# plt.subplot(313)
# sns.distplot(min5, color='#ff8000')
# #plt.show()
# if temp==1:
# plt.savefig('E:\\arrival\hour负二项分布\\'+str(vds)+' '+str(start)+' '+' 符合负二项分布'+' '+'.png')
# if temp==2:
# plt.savefig('E:\\arrival\hour泊松分布\\'+str(vds)+' '+str(start)+' '+' 符合泊松分布'+' '+'.png')
# if temp==3:
# plt.savefig('E:\\arrival\hour二项分布\\'+str(vds)+' '+str(start)+' '+' 二项分布'+' '+'.png')
C.append(temp)
A.append(vds)
B.append(start)
plt.close()
def huatu():#画散点图函数
temp=PHT()
plt.subplot(311)
plt.scatter(K,V)
plt.title(str(vds)+' K-V '+str(start))
plt.subplot(312)
plt.scatter(K,Q)
plt.title(str(vds)+' K-Q '+str(start))
plt.subplot(313)
plt.title(str(vds)+' Q-V '+str(start))
plt.scatter(Q,V)
if temp == 0:
plt.savefig('E:\\traffic\\'+str(vds)+' '+str(start)+' '+str(end)+'.png')
else:
plt.savefig('E:\\traffic\\' + str(vds) + ' ' + str(start) + ' ' + str(end) + str(temp) + '.png')
plt.close()
vdss1=[1018,1026,1028,1030,1032,1035,1036,1016,1007]#向西方向
vdss2=[1019,1027,1029,1031,1033,1034,1037,1017,1008]#向东方向
# vdss1=[1008]
# for vds in vdss1:
# for start in range(10,22):
# init(start,start+1,vds)
# hourarrival()
#
for vds in vdss1:
for start in range(10,22):
init(start,start+1,vds)
hourarrival()
#PHT()
for vds in vdss2:
for start in range(10,22):
init(start,start+1,vds)
hourarrival()
#PHT()
# arr=pd.DataFrame({"vds":A,'day':B,'M':M,'D':S,'kind':D,'time':C})
arr=pd.DataFrame({"vds":A,'day':B,'符合分布':C})
arr.to_excel('output1.xls')
# print(C)