汽车新能源汽车—面面观

动力电池热失控原理及危害

2017-07-20  本文已影响19人  水若蓝

引起动力电池锂电池热失控的因素主要有外部短路、外部高温和内部短路。

◎内部短路:由于电池的滥用,如过充过放导致的支晶、电池生产过程中的杂志灰尘等,将恶化生成刺穿隔膜,产生微短路,电能量的释放导致温升,温升带来的材料化学反应又扩大了短路路径,形成了更大的短路电流,这种互相累积的互相增强的破坏,导致热失控。下面以钴酸锂电芯为例,简述一个典型热失控过程。

A:准备阶段,电池处于满电状态;

B:内短路发生,大电流通过短路点而产生热量,并通过LiC6热扩散,达到SEI膜分解温度,SEI膜开始分解,放出少量CO2和C2H4,壳体轻微鼓胀,随着短路位置的不断放电,电池温度的不断上升,电液中链状溶剂开始分散,LiC6与电液也开始反应放热,伴随着C2H5F\C3H6\C3H8产生,但反应较慢,放热量较小;

C:随着放电的进行,短路位置温度继续升高,隔膜局部收缩融化,短路位置扩大,温度进一步升高,当内部温度达到Li0.5Co02的分解温度时,正极瞬间分解,并释放O2,后者于电液瞬间反应放出大量热量,同时放出大量CO2气体,造成电池内压增大,如果压力足够大,冲破电池壳体,引起电池爆炸;

D:如果壳体炸开,极片散落,温度不会继续升高,反应终止;但如果壳体只开裂,极片没有散落,这时LiC6继续与电液反应,温度会继续升高,但升温速率下降,由于反应速率较慢,所以可以维持较长时间;

E:当电池内部反应的产热速率小于散热速率时,电池开始降温,直至内部反应完毕;

◎外部短路:实际车辆运行中发生危险的概率很低,一是整车系统装配有熔断丝和电池管理系统BMS,二是电池能承受短时间的大电流冲击。极限情况下,短路点越过整车熔断器,同时BMS失效,较长时间的外部短路一般会导致电路中的连接薄弱点烧毁,很少导致电池发生热失控事件。现在,比较多的PACK企业采用了回路中加熔断丝的做法,更能有效的避免外短路引发的危害。

◎外部高温:由于锂电池结构的特性,高温下SEI膜、电解液、EC等会发生分解反应,电解液的分解物还会与正极、负极发生反应,电芯隔膜将融化分解,多种反应导致大量热量产生。隔膜融化导致内部短路,电能量的释放又增大了热量的生产。这种累计的互相增强的破坏作用,其后果是导致电芯防爆膜破裂,电解液喷出,发生燃烧起火。

注意的是,三元系电池相比磷酸铁锂电池,正极材料容易发生分解反应,从而释氧更加快速的发生热失控。以钴酸锂为例,达到一定温度时,正极瞬时分解释氧,导致快速发生热失控,极易燃烧。

LiPF6很不稳定,在加热或较高温度下就会分解,而PF5是呈强Lewis酸的高活性物质,其能使碳酸脂类溶剂热稳定性降低,并与之反应,在分解的气体产物中,CH3CH2F是该反应的特征产物。

结论:O2与熔剂发生氧化反应是大量气体的重要来源,同时也是热量的重要来源。

磷酸铁锂的橄榄石结构带来的是高温稳定性。在热失控的化学反应中,在电解液喷出前大量发生的是分解反应,而非氧化反应,产生气体较少而且慢,这正是磷酸铁锂相对安全的原理。磷酸铁锂相对安全,但并不意味着磷酸铁锂不发生热失控,不发生燃烧,近期的电动客车燃烧事故充分证明了这点。磷酸铁锂燃烧的主要原因是,热失控导致防爆膜破裂,继而电解液喷出,在此时高温的环境中,快速达到电解液的燃点,电解液燃烧,继而引燃电芯包裹材料等其他可燃物,进而加剧热量的散发,导致其他电芯发生热失控连锁反应。锰酸锂的尖晶石结构具有同样的稳定性,也属于相对安全的正极材料。

上一篇下一篇

猜你喜欢

热点阅读