我的学习

03_HashMap源码分析

2020-12-16  本文已影响0人  Mr_Qiang

存储结构

DbDYjO.png
Dbr8aj.png

默认初始化一个长度为16的数组,加载因子是3/4,每次存入的数据达到原数组的3/4的时候,就扩容,扩容为原来的两倍.当hash冲突的时候就把元素挂在数组下面,每个角标下的就是一个链表结构.如果链表长度大于8且数组长度大于64,就把链表转成红黑树.反之如果移除元素后树的元素个数小于6,则把树转成链表.
需要存入的数据会封装成一个Node节点,先是对要存入的数据的key进行hash计算,求出在数组中的下标,如果数组中的下表有元素了,且key不相等,在看已有的元素是不是树类型,如果不是,遍历链表查看key是不是等于链表中的key,如果都不相等,就把当前元素挂在链表的最后一个节点.
如果数组的第一个元素为树结构,就把当前元素挂在树下.

主要字段

默认的容量

    /**
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

默认的初始容量为16,可以设置,但是必须是2^n

最大的容量

     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

最大容量2^30

默认的加载因子

  /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

默认是3/4,当超过3/4的时候进行扩容.

树化的阈值

        /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     */
    static final int TREEIFY_THRESHOLD = 8;

当桶的深度达到8的时候,考虑由链表转成树结构.

不树化的阈值

        /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;

桶的深读小于6时,考虑由树结构转链表

最小的树化容量

        /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

可进行树型化的最小表容量。

Node节点

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
        }

一个由hash值,key,value和nextNode组成的节点.

主要方法

计算key的哈希值

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

计算数组长度的方法

    /**
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

构造方法

put(K k,V v)方法

  1. Node[]是否为空,如果为空,初始一个长度为16,加载因子为16*0.75的数组,n为数组的长度.
  2. (n-1)&key的hash值寻找在数组中的角标.
    1. 如果p角标上的元素为Null,则这是第一个元素,直接放在该位置.
    2. 如果p角标的元素不为null:
      1. 如果p角标的元素的key和本次需要添加的key相同,则把Node[]p赋值为e
      2. 如果p角标的元素key和本次添加的key不同,且Node[p]为树结构.把本次元素添加到树上,e=null
      3. 且Node[p]不为树结构,链表结构,把当前元素挂在链表的尾部.如果链表的深度超过了树化阈值(8),把链表转成树.e=null
    3. 如果e==null,就是之前发现的已经存在的key相同的元素了.根据onlyIfAbsent(默认false),是替换之前的value还是使用之前的value放弃现在的value.
  3. 数组++size,如果size>threshold(16),进行扩容.
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            //1. 初始化一个2^n次方的数组,n为数组的长度
            n = (tab = resize()).length;
            //2. 用数组长度-1与上key的hash值,如果为null,说明这是这个数组链表上的第一个元素,就把这个元素封装成Node放在这个数组角标下,且这个node的next=null.
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            //2.2如果这个数组下面有元素了
            //2.2.1 如果hash相同,且key相同,就把之前的元素作为现在的
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //2.2.2 如果key不相同且数组角标上的这个元素为ThreeNode类型,就把这个节点添加到树上.
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
            //2.2.3 如果不是树类型,是链表类型,遍历把当前的元素放到这个链表的尾部.
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //2.2.3.1 如果链表的深读>8了,就树化
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }

                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //2.3 如果当前元素不为null,就是之前已经存在key相同的了.
            //2.3.1根据条件替换之前的或者用之前的元素.
            
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //如果长度超过了阈值,进行扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

get(Object obj)方法

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

resize() 扩容的方法

  1. 计算数组的长度和扩容阈值
  2. 进行扩容后,重新计算角标位置,搬迁之前的元素。搬迁元素的规则是key.hash&oldCap,看结果是否为0,如果为0,则保留在新数组的原来角标位置。如果不为0,则放在新数组的[j+oldCap]的位置,j为在之前的角标位置,oldCap为之前的数组长度。

    /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        // 1. 获取当前数组的长度,如果长度>0,则进行扩容,计算新的容量为原来的2倍。扩容阈值为原来的2倍。
        // 1.1 如果当前数组容量为0,扩容阈值为0,则说明是第一次,使用默认容量16,扩容阈值为16*0.75
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }

        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //3. 根据上面计算的容量,创建新的数组。以下是把旧的数组元素搬迁到新的数组。
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //如果之前的数组角标上就一个元素,不是长链表,就重新根据现在的数组长度计算新的角标,把之前的元素放在新的位置
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                    //如果之前角标上不止一个元素,且元素为Three类型
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                        
                        /* e:为之前角标下的第一个元素。以下为挪元素的过程。
                        以下简之:把之前链表超过8的元素,通过((e.hash & oldCap) == 0)分成两组,
                       一组是hiNode,一组是loNode,lo的放在新的数组的原来的角标下,hiNode放在新的数组[j+oldCap]上,j为原来的角标,oldCap为原来的长
                       度*/
                
                       
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

测试HashMap的扩容机制.

==默认的数组初始容量为16,加载因子是3/4=0.75,每次扩容长度为之前的两倍.==

import java.lang.reflect.Field;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.util.HashMap;

/**
 * @Author: yaoqiang
 * @Date: 2020/12/4 9:37
 * @Description:
 */
@Slf4j
public class HashMapDemo {
    public static void main(String[] args) throws IllegalAccessException, NoSuchFieldException, InvocationTargetException, NoSuchMethodException {

        HashMap<Integer, Object> map = new HashMap<>();
        Field thresholdField = map.getClass().getDeclaredField("threshold");
        Method capacityMethod = map.getClass().getDeclaredMethod("capacity", null);
        thresholdField.setAccessible(true);
        capacityMethod.setAccessible(true);

        for (int i = 0; i < 100; i++) {
            map.put(i, null);
            int thre = (int) thresholdField.get(map);
            int invoke = (int) capacityMethod.invoke(map, null);
            log.debug("table size: {},put key-{} ,threshold: {}", invoke, i, thre);
        }
    }
}

Db3YdO.png

文档注释


/**
 * Hash table based implementation of the <tt>Map</tt> interface.  This
 * implementation provides all of the optional map operations, and permits
 * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
 * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
 * unsynchronized and permits nulls.)  This class makes no guarantees as to
 * the order of the map; in particular, it does not guarantee that the order
 * will remain constant over time.
 * 基于Hash表的Map实现接口.实现了所有的map操作,允许null 值和key,HashMap和Hashtable大致等价,除了他是不同步和允许Null。这个类不保证map的有序;特别,不保证随着时间的推移,保持不变。
 *
 * <p>This implementation provides constant-time performance for the basic
 * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
 * disperses the elements properly among the buckets.  Iteration over
 * collection views requires time proportional to the "capacity" of the
 * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
 * of key-value mappings).  Thus, it's very important not to set the initial
 * capacity too high (or the load factor too low) if iteration performance is
 * important.
 * 这个实现的基本操作为get()和put(),假设hash方法分散节点在适当的桶上。迭代集合需要的时间和HashMap桶上的元素加上HashMap的长度(capacity)成比例。因此,对于迭代器不要设置HashMap初始长度太高或者扩容因此态度,这是非超重要的。
 * 
 
 *
 * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
 * performance: <i>initial capacity</i> and <i>load factor</i>.  The
 * <i>capacity</i> is the number of buckets in the hash table, and the initial
 * capacity is simply the capacity at the time the hash table is created.  The
 * <i>load factor</i> is a measure of how full the hash table is allowed to
 * get before its capacity is automatically increased.  When the number of
 * entries in the hash table exceeds the product of the load factor and the
 * current capacity, the hash table is <i>rehashed</i> (that is, internal data
 * structures are rebuilt) so that the hash table has approximately twice the
 * number of buckets.
 * 
 一个HashMap实例有两个参数影响性能:初始容量和加载因子。初始容量是Hash表上桶数(数组长度),Hash表创建的时候就简单的设置了他的容量。加载因子是一个测量hash表多满后就允许去自动扩容。当hash表容量超过加载因子和当前的容量,hash表会重新hash计算(内部数据结构会重建),所以Hash表的桶有大约这两个参数。
 *
 * <p>As a general rule, the default load factor (.75) offers a good
 * tradeoff between time and space costs.  Higher values decrease the
 * space overhead but increase the lookup cost (reflected in most of
 * the operations of the <tt>HashMap</tt> class, including
 * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
 * the map and its load factor should be taken into account when
 * setting its initial capacity, so as to minimize the number of
 * rehash operations.  If the initial capacity is greater than the
 * maximum number of entries divided by the load factor, no rehash
 * operations will ever occur.
 * 默认情况下,加载因子是0.75影响一个好的权衡时间和空间消费。加载因子值较高会减少了空间的开销,但是增加了查找的成本(比如100%满的时候才扩容,减少了空间,但是每个桶上挂的元素就更多)。根据预期要放入map的键值对数量和加载因子去设置初始容量,以便去健身rehash的次数。如果初始容量高于最大的键值对数量除以加载因子,rehash将不会发生。
 *
 * <p>If many mappings are to be stored in a <tt>HashMap</tt>
 * instance, creating it with a sufficiently large capacity will allow
 * the mappings to be stored more efficiently than letting it perform
 * automatic rehashing as needed to grow the table.  Note that using
 * many keys with the same {@code hashCode()} is a sure way to slow
 * down performance of any hash table. To ameliorate impact, when keys
 * are {@link Comparable}, this class may use comparison order among
 * keys to help break ties.
 * 如果一些映射需要存在HashMap实例,创建一个相当大的初始容量去允许存储映射 比让它自动根据需要去扩容要更高效。注意使用一些相同hash码的key是一个降低hash表的性能。去改善影响,当keys去Comparable().这个类可能去使用比较排序让大部分的key打破关系.
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a hash map concurrently, and at least one of
 * the threads modifies the map structurally, it <i>must</i> be
 * synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.)  This is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.
 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedMap Collections.synchronizedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 * *注意这是线程不安全的,如果多线程并发的去访问hashmap,且有至少有一个线程去修改这个map结构,者必须在外边加synchronized.(结构改变是一些添加或者删除一个或者多个映射,仅仅改变值线管的已经存在的key不是一个结构的修改.) 这是典型的在封装map的对象上通过同步锁完成.
 * 如果这类对象不存在,必须使用包装过的synchronizedMap.这是最好是在创建时期进行,去防止在意外不安全的访问map.


 * <p>The iterators returned by all of this class's "collection view methods"
 * are <i>fail-fast</i>: if the map is structurally modified at any time after
 * the iterator is created, in any way except through the iterator's own
 * <tt>remove</tt> method, the iterator will throw a
 * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than risking
 * arbitrary, non-deterministic behavior at an undetermined time in the
 * future.
 * 
 *iterators返回通过所有这个类的""集合视图方法"快速的失败:如果在这个迭代器创建后的修改map结构,除了是通过迭代器去移除元素,迭代器会报"ConcurrentModificationException".因此面对并发的修改,迭代器的快速失败和清除,而不是冒险武断的,不确定的行为在未来一个不确定的时间.
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 * 
 *注意这个快速失败的行为迭代器不能保证,通常讲,不可能的保证在没有同步的并发修改下.快速失败迭代器抛出"ConcurrentModificationException"在一个尽最大努力的基准.
因此,这可能错误的去写一些程序依靠这个异常去正确性:迭代器的快速的失败行为可以使用仅仅在发现bug.
上一篇下一篇

猜你喜欢

热点阅读