单细胞测序专题集合

比较5种scRNA鉴定HVGs方法

2020-01-19  本文已影响0人  因地制宜的生信达人

单细胞转录组虽然说不太可能跟传统的bulk转录组那样对每个样本都测定到好几万基因的表达量,如果是10x这样的技术,每个细胞也就几百个基因是有表达量的,但是架不住细胞数量多,对大量细胞来说,这个表达矩阵的基因数量就很可观了。一般来说,gencode数据库的gtf文件注释到的五万多个基因里面,包括蛋白编码基因和非编码的,可以在单细胞表达矩阵里面过滤低表达量后,还剩下2万多个左右。

2万个基因,近万个细胞的表达矩阵,降维起来是一个浩大的计算量,所以有一个步骤,就是从2万个基因里面挑选一下 highly variable genes (HVG) 进行下游分析,从此就假装自己的单细胞转录组就仅仅是测到了HVGs,数量嘛,两千多吧!

那么,问题就来了, 什么样的标准算法来挑选 highly variable genes (HVG) 进行下游分析呢?

搜索最新文献

简单谷歌搜索highly variable genes (HVG) 加上单细胞,这样的关键词就可以看到很多手把手教程:

基本上经过四五个小时的模式,你就会总结到一些常见的挑选 highly variable genes (HVG) 的算法和R包,我简单罗列5个,会对比一下:

在scRNAseq数据集比较这5个方法

接下来我就没有空继续做这些琐碎的比较啦,老规矩,跟我们的单细胞一期和二期视频学习一下,学习笔记我们有专员操刀,下面看公司学习者的表演:

目的:利用scRNA-seq包的表达矩阵测试几个R包寻找HVGs,然后画upsetR图看看不同方法的HVG的重合情况。

rm(list = ls())  
options(stringsAsFactors = F)

关于测试数据scRNAseq

包中内置了Pollen et al. 2014 的数据集(https://www.nature.com/articles/nbt.2967),到19年8月为止,已经有446引用量了。只不过原文完整的数据是 23730 features, 301 samples,这个包中只选取了4种细胞类型:pluripotent stem cells 分化而成的 neural progenitor cells (NPC,神经前体细胞) ,还有 GW16(radial glia,放射状胶质细胞) 、GW21(newborn neuron,新生儿神经元) 、GW21+3(maturing neuron,成熟神经元)

library(scRNAseq)
## ----- Load Example Data -----
data(fluidigm)

# 得到RSEM矩阵
assay(fluidigm)  <- assays(fluidigm)$rsem_counts
ct <- floor(assays(fluidigm)$rsem_counts)
ct[1:4,1:4]
##          SRR1275356 SRR1274090 SRR1275251 SRR1275287
## A1BG              0          0          0          0
## A1BG-AS1          0          0          0          0
## A1CF              0          0          0          0
## A2M               0          0          0         33
# 样本注释信息
pheno_data <- as.data.frame(colData(fluidigm))
table(pheno_data$Coverage_Type)
##
## High  Low
##   65   65
table(pheno_data$Biological_Condition)
##
##   GW16   GW21 GW21+3    NPC
##     52     16     32     30

利用Seurat V3

suppressMessages(library(Seurat))
packageVersion("Seurat") # 检查版本信息
## [1] '3.0.2'
seurat_sce <- CreateSeuratObject(counts = ct,
                          meta.data = pheno_data,
                          min.cells = 5,
                          min.features = 2000,
                          project = "seurat_sce")
seurat_sce <- NormalizeData(seurat_sce)
# 默认取前2000个
seurat_sce <- FindVariableFeatures(seurat_sce, selection.method = "vst", nfeatures=2000)
VariableFeaturePlot(seurat_sce)
seurat_hvg <- VariableFeatures(seurat_sce)
length(seurat_hvg)
## [1] 2000
head(seurat_hvg)
## [1] "FOS"     "ERBB4"   "SCD"     "SGPL1"   "ARID5B"  "IGFBPL1"

利用Monocle

library(monocle)
gene_ann <- data.frame(
  gene_short_name = row.names(ct),
  row.names = row.names(ct)
)
sample_ann <- pheno_data
# 然后转换为AnnotatedDataFrame对象
pd <- new("AnnotatedDataFrame",
          data=sample_ann)
fd <- new("AnnotatedDataFrame",
          data=gene_ann)
monocle_cds <- newCellDataSet(
  ct,
  phenoData = pd,
  featureData =fd,
  expressionFamily = negbinomial.size(),
  lowerDetectionLimit=1)
monocle_cds
## CellDataSet (storageMode: environment)
## assayData: 26255 features, 130 samples
##   element names: exprs
## protocolData: none
## phenoData
##   sampleNames: SRR1275356 SRR1274090 ... SRR1275261 (130 total)
##   varLabels: NREADS NALIGNED ... Size_Factor (29 total)
##   varMetadata: labelDescription
## featureData
##   featureNames: A1BG A1BG-AS1 ... ZZZ3 (26255 total)
##   fvarLabels: gene_short_name
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:
monocle_cds <- estimateSizeFactors(monocle_cds)
monocle_cds <- estimateDispersions(monocle_cds)
disp_table <- dispersionTable(monocle_cds)
unsup_clustering_genes <- subset(disp_table, mean_expression >= 0.1)
monocle_cds <- setOrderingFilter(monocle_cds, unsup_clustering_genes$gene_id)
plot_ordering_genes(monocle_cds)
monocle_hvg <- unsup_clustering_genes[order(unsup_clustering_genes$mean_expression, decreasing=TRUE),][,1]
length(monocle_hvg)
## [1] 13986
# 也取前2000个
monocle_hvg <- monocle_hvg[1:2000]
head(monocle_hvg)
## [1] "MALAT1" "TUBA1A" "MAP1B"  "SOX4"   "EEF1A1" "SOX11"

利用scran

library(SingleCellExperiment)
library(scran)
scran_sce <- SingleCellExperiment(list(counts=ct))
scran_sce <- computeSumFactors(scran_sce)
scran_sce <- normalize(scran_sce)
fit <- trendVar(scran_sce, parametric=TRUE,use.spikes=FALSE)
dec <- decomposeVar(scran_sce, fit)

plot(dec$mean, dec$total, xlab="Mean log-expression",
     ylab="Variance of log-expression", pch=16)
curve(fit$trend(x), col="dodgerblue", add=TRUE)
scran_df <- dec
scran_df <- scran_df[order(scran_df$bio, decreasing=TRUE),]
scran_hvg <- rownames(scran_df)[scran_df$FDR<0.1]
length(scran_hvg)
## [1] 875
head(scran_hvg)
## [1] "IGFBPL1" "STMN2"   "ANP32E"  "EGR1"    "DCX"     "XIST"

利用M3Drop

library(M3DExampleData)
# 需要提供表达矩阵(expr_mat)=》normalized or raw (not log-transformed)
HVG <-M3Drop::BrenneckeGetVariableGenes(expr_mat=ct, spikes=NA, suppress.plot=FALSE, fdr=0.1, minBiolDisp=0.5, fitMeanQuantile=0.8)
M3Drop_hvg <- rownames(HVG)
length(M3Drop_hvg)
## [1] 917
head(M3Drop_hvg)
## [1] "CCL2"   "EMP1"   "ZNF630" "NRDE2"  "PLCL1"  "KCTD21"

自定义函数

来自:(Brennecke et al 2013 method) Extract genes with a squared coefficient of variation >2 times the fit regression

实现了:Select the highly variable genes based on the squared coefficient of variation and the mean gene expression and return the RPKM matrix the the HVG

if(T){
  getMostVarGenes <- function(
    data=data,              # RPKM matrix
    fitThr=1.5,             # Threshold above the fit to select the HGV
    minMeanForFit=1         # Minimum mean gene expression level
  ){
    # data=females;fitThr=2;minMeanForFit=1
    # Remove genes expressed in no cells
    data_no0 <- as.matrix(
      data[rowSums(data)>0,]
    )
    # Compute the mean expression of each genes
    meanGeneExp <- rowMeans(data_no0)
    names(meanGeneExp)<- rownames(data_no0)

    # Compute the squared coefficient of variation
    varGenes <- rowVars(data_no0)
    cv2 <- varGenes / meanGeneExp^2

    # Select the genes which the mean expression is above the expression threshold minMeanForFit
    useForFit <- meanGeneExp >= minMeanForFit

    # Compute the model of the CV2 as a function of the mean expression using GLMGAM
    fit <- glmgam.fit( cbind( a0 = 1,
                              a1tilde = 1/meanGeneExp[useForFit] ),
                       cv2[useForFit] )
    a0 <- unname( fit$coefficients["a0"] )
    a1 <- unname( fit$coefficients["a1tilde"])

    # Get the highly variable gene counts and names
    fit_genes <- names(meanGeneExp[useForFit])
    cv2_fit_genes <- cv2[useForFit]
    fitModel <- fit$fitted.values
    names(fitModel) <- fit_genes
    HVGenes <- fitModel[cv2_fit_genes>fitModel*fitThr]
    print(length(HVGenes))

    # Plot the result
    plot_meanGeneExp <- log10(meanGeneExp)
    plot_cv2 <- log10(cv2)
    plotData <-  data.frame(
      x=plot_meanGeneExp[useForFit],
      y=plot_cv2[useForFit],
      fit=log10(fit$fitted.values),
      HVGenes=log10((fit$fitted.values*fitThr))
    )
    p <- ggplot(plotData, aes(x,y)) +
      geom_point(size=0.1) +
      geom_line(aes(y=fit), color="red") +
      geom_line(aes(y=HVGenes), color="blue") +
      theme_bw() +
      labs(x = "Mean expression (log10)", y="CV2 (log10)")+
      ggtitle(paste(length(HVGenes), " selected genes", sep="")) +
      theme(
        axis.text=element_text(size=16),
        axis.title=element_text(size=16),
        legend.text = element_text(size =16),
        legend.title = element_text(size =16 ,face="bold"),
        legend.position= "none",
        plot.title = element_text(size=18, face="bold", hjust = 0.5),
        aspect.ratio=1
      )+
      scale_color_manual(
        values=c("#595959","#5a9ca9")
      )
    print(p)

    # Return the RPKM matrix containing only the HVG
    HVG <- data_no0[rownames(data_no0) %in% names(HVGenes),]
    return(HVG)
  }
}
library(statmod)
diy_hvg <- rownames(getMostVarGenes(ct))
## [1] 2567

看起来代码比较长,主要是绘图的时候拖拉了。

length(diy_hvg)
## [1] 2567
head(diy_hvg)
## [1] "A2M"     "A2MP1"   "AAMP"    "ABCA11P" "ABCA3"   "ABCB10"

upsetR作图

require(UpSetR)
input <- fromList(list(seurat=seurat_hvg, monocle=monocle_hvg,
                       scran=scran_hvg, M3Drop=M3Drop_hvg, diy=diy_hvg))
upset(input)

很多图都是可以美化的,不过并不是我们的重点

可以看到,不同的R包和方法,差异不是一般的大啊!!!

更多方法

比如基尼系数:findHVG: Finding highly variable genes (HVG) based on Gini 见:https://rdrr.io/github/jingshuw/descend/man/findHVG.html

赶快试一下吧,探索的过程中,你就会对单细胞数据处理的认知加强了。

上一篇下一篇

猜你喜欢

热点阅读