PCAWG:TCGA泛癌全基因组分析
介绍
泛癌分析
我们都知道在TCGA数据库当中,包括了33种所有实体肿瘤的测序的结果。我们在进行TCGA数据分析的时候,除了可以对单一的癌种进行分析之外。还可以对所有的33种肿瘤进行统一的分析解读,来寻找33种肿瘤当中所存在的共同的特征。这就是我们说到的泛癌分析了。
关于泛癌分析的计划,从2013年就开始了。那个时候就提到了要对TCGA的所有数据来进行整合的分析。
The Cancer Genome Atlas Research Network., Weinstein, J., Collisson, E. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113–1120 (2013). https://doi.org/10.1038/ng.2764在2018年的时候,TCGA的相关工作人员在cell旗下的等一系列的高分杂志上发表了27篇相关的相关泛癌分析的文献。当时的那个计划叫做泛癌图谱(Pan-Cancer Atlas)。
(https://www.genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas)再往后系统的泛癌分析接下来就是到了今年的PCAWG了。
PCAWG
泛癌全基因组分析(Pan-Cancer Analysis of Whole Genomes , PCAWG)是TCGA的相关工作人员,利用TCGA数据当中的WGS(全基因组测序)的数据。对所有肿瘤在DNA水平上的统一的分析。而这次的话,在nature旗下的杂志一次性的发表了17篇文章 (下一次的泛癌文章,会不会发到science旗下呢?)。
[Pan-Cancer Analysis of Whole Genomes (nature.com)] The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). https://doi.org/10.1038/s41586-020-1969-6对于这次的PCAWG方面的分析,TCGA的工作人员通过主要是通过结构变异、肿瘤进化、突变特征、癌症驱动、基因调控以及相关工具来进行归类的。如果想要了解的可以点击阅读原文来查看所有的相关文献。
在线分析PCAWG的工具
为什么突然要介绍介绍PCAWG呢?这个因为最近在NATURE COMMUNICATIONS上发表了一篇介绍使用和可视化PCAWG数据的文献。在这个文献里面介绍了五个可以用来分析PCAWG的在线数据库。利用这五个数据库我们就可以来自己分析PCAWG的数据了。
Goldman, M.J., Zhang, J., Fonseca, N.A. et al. A user guide for the online exploration and visualization of PCAWG data. Nat Commun 11, 3400 (2020). https://doi.org/10.1038/s41467-020-16785-6在这篇文章里面,同时也对这五个数据库的功能进行了一下简单的汇总。通过下面表格的汇总,通过?的表格看出
- 在数据检索方面,ICGC和UCSC XENA可以满足所有的检索方式
- 在数据可视化方面,每个数据库的功能则各有不同。
- 在数据分析方面,PCAWG Scout可以进行所有其他数据库进行的分析
- 在数据下载方面,尤其是最原始的BAM数据的下载ICGC数据库是可以的,别的都不行。
应用
在2020年Nature杂志及其子刊上,PCAWG项目组一共发表了22篇文章,涵盖了共计六个方面:
- 1 Pan-cancer analysis of whole gcnomes (泛癌驱动基因突变)
- 2 Patterns of somatic structural variation in human canccr genomes ( somatic结构变异)
- 3 The rcpertoire of mutational signatures in human cancer (突变 signaturc)
- 4 The evolutionary history of 2,658 cancers (泛癌肿瘤进化)
- 5 Genomic basis for RNA alterations in cancer ( RNA altcrations)
- 6 Analyses of non-coding somatic drivers in 2,658 cancer whole genomes (non-coding 区域突变)
文章分别为:
- 1.Pan-cancer analysis of whole genomes. 5 FEB 2020,Nature (* DOI: 10.1038/s41586-020-1969-6
) - 2.Patterns of somatic structural variation in human cancer genomes.5 FEB 2020, Nature (DOI: 10.1038/s41586-019-1913-9
) - 3.The repertoire of mutational signatures in human cancer.5 FEB 2020,Nature (DOI: 10.1038/s41586-020-1943-3
) - 4.The evolutionary history of 2,658 cancers. 5 FEB 2020,Nature (DOI: 10.1038/s41586-019-1907-7
) - 5.Genomic basis for RNA alterations in cancer. 5 FEB 2020,Nature (DOI: 10.1038/s41586-020-1970-0
) - 6.Analyses of non-coding somatic drivers in 2,658 cancer whole genomes 5 FEB 2020, Nature (DOI: 10.1038/s41586-020-1970-0
) - 7.Comprehensive molecular characterization of mitochondrial genomes in human cancers. 5FEB 2020,Nature Genetics (DOI: 10.1038/s41588-019-0557-x
) - 8.Disruption of chromatin folding domains by somatic genomic rearrangements inhuman cancer.5 FEB 2020,Nature Genetics (DOI: 10.1038/s41588-019-0564-y
) - 9.Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1retrotransposition. 5 FEB 2020, Nature Genetics (DOI: 10.1038/s41588-019-0562-0
) - 10.The landscape of viral associations in human cancers.5 FEB 2020, Nature Genetics (DOI: 10.1038/s41588-019-0558-9
) - 11.Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genomesequencing. 5 FEB 2020,Nature Genetics (DOI: 10.1038/s41588-019-0576-7
) - 12.Butler enables rapid cloud-based analysis of thousands of human genomes.5 FEB 2020,Nature Biotechnology (DOI: 10.1038/s41587-019-0360-3
) - 13.Cancer LncRNA Census reveals evidence for deep functional conservation of longnoncoding RNAs in tumorigenesis. 5 FEB 2020, Communications Biology (DOI: 10.1038/s42003-019-0741-7
) - 14.Integrative pathway enrichment analysis of multivariate omics data. 5 FEB 2020,NatureCommunications (DOI: 10.1038/s41467-019-13983-9
) - 15.Pathway and network analysis of more than 2500 whole cancer genomes.5 FEB 2020,Nature Communications (DOI: 10.1038/s41467-020-14367-0
) - 16.A deep learning system accurately classifies primary and metastatic cancers usingpassenger mutation patterns.5 FEB 2020,Nature Communications (DOI: 10.1038/s41467-019-13825-8
) - 17.High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genesderegulated by rearrangement-mediated cis-regulatory alterations.Nature communications vol. 11,1 736. 5 Feb. 2020 (DOI: 10.1038/s41467-019-13885-w
) - 18.Genomic footprints of activated telomere maintenance mechanisms in cancer. 5 FEB 2020,Nature Communications (DOI: 10.1038/s41467-019-13824-9
) - 19.Combined burden and functional impact tests for cancer driver discovery using DriverPower. 5 FEB 2020,Nature Communications ( DOI: https://doi.org/10.1038/s41467-019-13929-1 )
- 20.Inferring structural variant cancer cell fraction. 5 FEB 2020, Nature Communications (DOI: 10.1038/s41467-020-14351-8
) - 21.Divergent mutational processes distinguish hypoxic and normoxic tumours. 5 FEB 2020.Nature Communications (DOI: 10.1038/s41467-019-14052-x
) - 22.Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig. 5 FEB 2020,Nature Communications (DOI: 10.1038/s41467-020-14352-7
)
感兴趣的科研宝子自行下载研读吧!
-------------------------------------------------------------------------------------------------------------------------------------------------------------I'm a line ! Thanks for your attention !----------------------------------------------------------------------------------------------------------------